Dawn’s Gamma Ray and Neutron Detector

The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.

[1]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[2]  V. Eke,et al.  Models of the distribution and abundance of hydrogen at the lunar south pole , 2007 .

[3]  Christopher T. Russell,et al.  The Dawn Mission to Vesta and Ceres , 2011 .

[4]  P. A. Russo,et al.  Physics-based generation of gamma-ray response functions for CdZnTe detectors , 1998 .

[5]  R. Wiens,et al.  Evidence for water ice near the lunar poles , 2001 .

[6]  R. D. O'dell,et al.  Gravitational effects on planetary neutron flux spectra , 1989 .

[7]  T. McCord,et al.  Ceres: Its Origin, Evolution and Structure and Dawn’s Potential Contribution , 2011 .

[8]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[9]  J. Luhmann,et al.  How unprecedented a solar minimum? , 2010 .

[10]  Kim Strohbehn,et al.  The MESSENGER Gamma-Ray and Neutron Spectrometer , 2007 .

[11]  F. Nimmo,et al.  Forced obliquities and moments of inertia of Ceres and Vesta , 2011 .

[12]  Richard P. Binzel,et al.  Origin, Internal Structure and Evolution of 4 Vesta , 2011 .

[13]  Daniel J. Scheeres,et al.  Characterizing and navigating small bodies with imaging data , 2006 .

[14]  Thomas H. Prettyman,et al.  Elemental composition of the lunar surface: Analysis of gamma ray spectroscopy data from Lunar Prospector , 2006 .

[15]  Roger N. Clark,et al.  Detection of Adsorbed Water and Hydroxyl on the Moon , 2009, Science.

[16]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[17]  Paul G. Lucey,et al.  Iron abundances on the lunar surface as measured by the Lunar Prospector gamma‐ray and neutron spectrometers , 2002 .

[18]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[19]  Angioletta Coradini,et al.  Mapping the elemental composition of Ceres and Vesta: Dawn’s gamma ray and neutron detector , 2004, SPIE Asia-Pacific Remote Sensing.

[20]  S. Maurice,et al.  Small‐area thorium features on the lunar surface , 2003 .

[21]  M. Carter Computer graphics: Principles and practice , 1997 .

[22]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[23]  Thomas H. Prettyman,et al.  The Lunar Prospector gamma ray and neutron spectrometers; overview of lunar global composition measurements , 1999 .

[24]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[25]  M. Mellon,et al.  Redistribution of subsurface neutrons caused by ground ice on Mars , 1993 .

[26]  P. Tricarico,et al.  The dynamical environment of Dawn at Vesta , 2010, 1004.3610.

[27]  A. Rivkin,et al.  The Surface Composition of Ceres , 2011 .

[28]  Thomas H. Prettyman,et al.  Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission , 2004 .

[29]  C. Sotin,et al.  Ceres: Evolution and current state , 2005 .

[30]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[31]  M. Mellon,et al.  H layering in the top meter of Mars , 2008 .

[32]  P. Luke Unipolar charge sensing with coplanar electrodes-application to semiconductor detectors , 1995 .

[33]  R. Reedy,et al.  Lunar neutron leakage fluxes as a function of composition and hydrogen content , 1991 .

[34]  Angioletta Coradini,et al.  Vesta and Ceres: Crossing the History of the Solar System , 2011 .

[35]  Richard D. Starr,et al.  Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .

[36]  David J. Lawrence,et al.  Gamma-ray measurements from Lunar Prospector: Time series data reduction for the Gamma-Ray Spectrometer , 2004 .

[37]  Richard D. Starr,et al.  Elemental composition from gamma‐ray spectroscopy of the NEAR‐Shoemaker landing site on 433 Eros , 2001 .

[38]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[39]  H. Haack,et al.  Thermal and shock history of mesosiderites and their large parent asteroid , 1996 .

[40]  R. Woodward,et al.  Sunlit Io atmospheric [O I] 6300 Å emission and the plasma torus , 2001 .

[41]  Thomas H. Prettyman,et al.  Method for mapping charge pulses in semiconductor radiation detectors , 1998 .

[42]  Andreas Nathues,et al.  The Dawn Topography Investigation , 2011 .

[43]  W. Feldman,et al.  Characterization of Mars' seasonal caps using neutron spectroscopy , 2009 .

[44]  T. McCord,et al.  Ceres’ evolution and present state constrained by shape data , 2010 .

[45]  M. Lindstrom,et al.  Geochemistry of eucrites: genesis of basaltic eucrites, and Hf and Ta as petrogenetic indicators for altered antarctic eucrites , 2003 .

[46]  S. Maurice,et al.  Sensitivity of orbital neutron measurements to the thickness and abundance of surficial lunar water , 2011 .

[47]  H. McSween,et al.  A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating☆ , 1998 .

[48]  Paul G. Lucey,et al.  Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations , 2000 .

[49]  Christopher T. Russell,et al.  Gamma-ray and neutron spectrometer for the Dawn mission to 1 Ceres and 4 Vesta , 2003 .

[50]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[51]  W. Feldman,et al.  MCNPX benchmark for cosmic ray interactions with the Moon , 2006 .

[52]  M. Zolotov On the composition and differentiation of Ceres , 2009 .

[53]  C. Russell,et al.  Photometric mapping of Asteroid (4) Vesta’s southern hemisphere with Hubble Space Telescope , 2010 .

[54]  Robert L. Tokar,et al.  Fast neutron flux spectrum aboard Mars Odyssey during cruise , 2001 .

[55]  Richard P. Binzel,et al.  Vesta: Spin Pole, Size, and Shape from HST Images , 1997 .

[56]  S. Storms,et al.  CdZnTe gamma ray spectrometer for orbital planetary missions , 2001 .

[57]  M. D. Dyar,et al.  Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1 , 2009, Science.

[58]  A. Rivkin,et al.  Rotationally-resolved spectra of Ceres in the 3-μm region , 2010 .

[59]  P. Jansson Deconvolution of images and spectra , 1997 .

[60]  C. H. Acton,et al.  Ancillary data services of NASA's Navigation and Ancillary Information Facility , 1996 .

[61]  Lori M. Feaga,et al.  Temporal and Spatial Variability of Lunar Hydration As Observed by the Deep Impact Spacecraft , 2009, Science.

[62]  Eliot F. Young,et al.  Photometric analysis of 1 Ceres and surface mapping from HST observations , 2006 .

[63]  Zhong He,et al.  Characteristics of depth-sensing coplanar grid CdZnTe detectors , 2005 .

[64]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[65]  C. Pieters,et al.  Remote geochemical analysis : elemental and mineralogical composition , 1993 .

[66]  R. Jaumann,et al.  Surface Composition of Vesta: Issues and Integrated Approach , 2011 .

[67]  M. A. Mariscotti,et al.  A method for automatic identification of peaks in the presence of background and its application to spectrum analysis , 1967 .

[68]  Andrew Scott Rivkin,et al.  Brucite and carbonate assemblages from altered olivine-rich materials on Ceres , 2009 .

[69]  P. Siffert,et al.  Time and thermal recovery of irradiated CdZnTe detectors , 2006 .

[70]  I. Franchi,et al.  Geochemistry of diogenites: Still more diversity in their parental melts , 2008 .

[71]  Andrew Scott Rivkin,et al.  The surface composition of Ceres: Discovery of carbonates and iron-rich clays , 2006 .

[72]  P. Luke Single-polarity charge sensing in ionization detectors using coplanar electrodes , 1994 .

[73]  T. Prettyman,et al.  K‐Th‐Ti systematics and new three‐component mixing model of HED meteorites: Prospective study for interpretation of gamma‐ray and neutron spectra for the Dawn mission , 2010 .

[74]  Angioletta Coradini,et al.  Dawn Mission to Vesta and Ceres , 2007 .

[75]  P. Spudis,et al.  Global spatial deconvolution of Lunar Prospector Th abundances , 2007 .

[76]  J. Duderstadt,et al.  Nuclear reactor analysis , 1976 .

[77]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[78]  H. McSween,et al.  Geochemistry of 4 Vesta based on HED meteorites: Prospective study for interpretation of gamma ray and neutron spectra for the Dawn mission , 2007 .

[79]  S. Maurice,et al.  Hydrogen content of sand dunes within Olympia Undae , 2008 .

[80]  W. Feldman,et al.  A novel fast-neutron detector for space applications , 1991 .

[81]  M. Gaffey,et al.  Geologic Mapping of Vesta from 1994 Hubble Space Telescope Images , 1995 .

[82]  T. Hiroi,et al.  Evidence of hydrated and/or hydroxylated minerals on the surface of asteroid 4 Vesta , 2003 .

[83]  A. Yamaguchi,et al.  Evidence for K‐rich terranes on Vesta from impact spherules , 2009 .

[84]  G. Kallemeyn,et al.  Siderophile and other geochemical constraints on mixing relationships among HED-meteoritic breccias , 2009 .

[85]  W. Feldman,et al.  A technique to measure the neutron lifetime from low-earth orbit , 1990 .

[86]  R. H. Brown,et al.  Evidence for Ammonium-Bearing Minerals on Ceres , 1991, Science.

[87]  F. Fanale,et al.  The water regime of asteroid (1) Ceres , 1989 .

[88]  H. McSween,et al.  HED Meteorites and Their Relationship to the Geology of Vesta and the Dawn Mission , 2011 .

[89]  Grant Heiken,et al.  Book-Review - Lunar Sourcebook - a User's Guide to the Moon , 1991 .