Martingales and Locality in Distributed Computing

We use Martingale inequalities to give a simple and uniform analysis of two families of distributed randomised algorithms for edge colouring graphs.

[1]  Gian Luca Cattani,et al.  A Representation Result for Free Cocompletions , 1998 .

[2]  Glynn Winskel,et al.  A Categorical Axiomatics for Bisimulation , 1998, CONCUR.

[3]  Bruce A. Reed,et al.  A Bound on the Strong Chromatic Index of a Graph, , 1997, J. Comb. Theory B.

[4]  Olivier Danvy,et al.  Compiling Actions by Partial Evaluation, Revisited , 1998 .

[5]  Alessandro Panconesi,et al.  Nearly optimal distributed edge colouring in O(log log n) rounds , 1997, SODA '97.

[6]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[7]  Michael Luby Removing Randomness in Parallel Computation without a Processor Penalty , 1993, J. Comput. Syst. Sci..

[8]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[9]  Ulrich Kohlenbach,et al.  Things that can and things that can’t be done in PRA , 1998 .

[10]  Roberto Bruni,et al.  A Comparison of Petri Net Semantics under the Collective Token Philosophy , 1998, ASIAN.

[11]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[12]  Sandeep Sen,et al.  The Hardness of Speeding-up Knapsack , 1998 .

[13]  Alessandro Panconesi,et al.  Near-Optimal, Distributed Edge Colouring via the Nibble Method , 1996, Theor. Comput. Sci..

[14]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .

[15]  Olivier Danvy,et al.  Assessing the Overhead of ML Exceptions by Selective CPS Transformation , 1998 .

[16]  Aravind Srinivasan,et al.  Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds , 1997, SIAM J. Comput..

[17]  Meera Sitharam,et al.  Generating hard tautologies using predicate logic and the symmetric group , 1998, Log. J. IGPL.