Bayesian fMRI data analysis with sparse spatial basis function priors

In previous work we have described a spatially regularised General Linear Model (GLM) for the analysis of brain functional Magnetic Resonance Imaging (fMRI) data where Posterior Probability Maps (PPMs) are used to characterise regionally specific effects. The spatial regularisation is defined over regression coefficients via a Laplacian kernel matrix and embodies prior knowledge that evoked responses are spatially contiguous and locally homogeneous. In this paper we propose to finesse this Bayesian framework by specifying spatial priors using Sparse Spatial Basis Functions (SSBFs). These are defined via a hierarchical probabilistic model which, when inverted, automatically selects an appropriate subset of basis functions. The method includes non-linear wavelet shrinkage as a special case. As compared to Laplacian spatial priors, SSBFs allow for spatial variations in signal smoothness, are more computationally efficient and are robust to heteroscedastic noise. Results are shown on synthetic data and on data from an event-related fMRI experiment.

[1]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[2]  Michael Unser,et al.  Statistical analysis of functional MRI data in the wavelet domain , 1998, IEEE Transactions on Medical Imaging.

[3]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[4]  E. Bullmore,et al.  Wavelets and functional magnetic resonance imaging of the human brain , 2004, NeuroImage.

[5]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[6]  Guillaume Flandin,et al.  Bayesian comparison of spatially regularised general linear models , 2007, Human brain mapping.

[7]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[8]  L. Fahrmeir,et al.  Bayesian spatio-temporal inference in functional magnetic resonance imaging , 2001 .

[9]  Guillaume Flandin,et al.  Bayesian Analysis of fMRI data with Spatial Priors , 2005 .

[10]  Hans Knutsson,et al.  Adaptive analysis of fMRI data , 2003, NeuroImage.

[11]  Jens Ledet Jensen,et al.  Spatial mixture modelling of fMRI data , 2000 .

[12]  B. Everitt,et al.  Mixture model mapping of brain activation in functional magnetic resonance images , 1999, Human brain mapping.

[13]  M. Clyde,et al.  Multiple shrinkage and subset selection in wavelets , 1998 .

[14]  Karl J. Friston,et al.  Posterior probability maps and SPMs , 2003, NeuroImage.

[15]  Thierry Blu,et al.  WSPM or How to Obtain Statistical Parametric Maps using Shift-Invariant Wavelet Processing , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[16]  Dimitri Van De Ville,et al.  Wavelets versus resels in the context of fMRI: establishing the link with SPM , 2003, SPIE Optics + Photonics.

[17]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[18]  Guillermo Sapiro,et al.  Anisotropic 2-D and 3-D averaging of fMRI signals , 2001, IEEE Transactions on Medical Imaging.

[19]  Karl J. Friston,et al.  Mixtures of general linear models for functional neuroimaging , 2003, IEEE Transactions on Medical Imaging.

[20]  Probal Chaudhuri,et al.  Statistical significance of features in digital images , 2004, Image Vis. Comput..

[21]  Dimitri Van De Ville,et al.  Integrated wavelet processing and spatial statistical testing of fMRI data , 2004, NeuroImage.

[22]  B. Whitcher,et al.  Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains , 2005, IEEE Transactions on Signal Processing.

[23]  M. Girolami,et al.  Advances in Independent Component Analysis , 2000, Perspectives in Neural Computing.

[24]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[25]  Mark W. Woolrich,et al.  Fully Bayesian spatio-temporal modeling of FMRI data , 2004, IEEE Transactions on Medical Imaging.

[26]  Matthew Brett,et al.  HBM functional imaging analysis contest data analysis in wavelet space , 2006, Human brain mapping.

[27]  Rainer Hinz,et al.  Multi-resolution Bayesian regression in PET dynamic studies using wavelets , 2006, NeuroImage.

[28]  Tom E. Bishop,et al.  Blind Image Restoration Using a Block-Stationary Signal Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[29]  Alan C. Evans,et al.  Searching scale space for activation in PET images , 1996, Human brain mapping.

[30]  Karl J. Friston,et al.  Variational Bayesian inference for fMRI time series , 2003, NeuroImage.

[31]  S. Mallat A wavelet tour of signal processing , 1998 .

[32]  Hae Yong Kim,et al.  Robust anisotropic diffusion to produce enhanced statistical parametric map from noisy fMRI , 2005, Comput. Vis. Image Underst..

[33]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[34]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[35]  Karl J. Friston,et al.  Bayesian fMRI time series analysis with spatial priors , 2005, NeuroImage.

[36]  T. Shallice,et al.  Face repetition effects in implicit and explicit memory tests as measured by fMRI. , 2002, Cerebral cortex.

[37]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[39]  M. J. Fadili,et al.  A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps , 2004, NeuroImage.

[40]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[41]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[42]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[43]  Jos B. T. M. Roerdink,et al.  Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing , 2004, IEEE Transactions on Medical Imaging.

[44]  M. Hallett Human Brain Function , 1998, Trends in Neurosciences.

[45]  Rainer Hinz,et al.  Wavelet variance components in image space for spatiotemporal neuroimaging data , 2005, NeuroImage.

[46]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[47]  N V Hartvig,et al.  Spatial mixture modeling of fMRI data , 2000, Human brain mapping.

[48]  Karl J. Friston,et al.  Anatomically Informed Basis Functions , 2000, NeuroImage.

[49]  Anestis Antoniadis,et al.  Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study , 2001 .

[50]  Xavier Descombes,et al.  fMRI Signal Restoration Using a Spatio-Temporal Markov Random Field Preserving Transitions , 1998, NeuroImage.

[51]  C Gössl,et al.  Bayesian Spatiotemporal Inference in Functional Magnetic Resonance Imaging , 2001, Biometrics.

[52]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[53]  Jean-Baptiste Poline,et al.  Analysis of individual brain activation maps using hierarchical description and multiscale detection , 1994, IEEE Trans. Medical Imaging.