Relational parametricity and control
暂无分享,去创建一个
[1] Ryu Hasegawa,et al. Categorical data types in parametric polymorphism , 1994, Mathematical Structures in Computer Science.
[2] Ralph Matthes,et al. Parigot's Second Order λμ-Calculus and Inductive Types , 2000 .
[3] Hayo Thielecke,et al. Categorical Structure of Continuation Passing Style , 1997 .
[4] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[5] Masahito Hasegawa. Semantics of Linear Continuation-Passing in Call-by-Name , 2004, FLOPS.
[6] Edmund Robinson,et al. Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.
[7] Martin Hofmann. Completeness of Continuation Models for λ μ-Calculus , 2002 .
[8] Yoshihiko Kakutani. Duality between Call-by-Name Recursion and Call-by-Value Iteration , 2002, CSL.
[9] C.-H. Luke Ong,et al. A Curry-Howard foundation for functional computation with control , 1997, POPL '97.
[10] Izumi Takeuti. An Axiomatic System of Parametricity , 1998, Fundam. Informaticae.
[11] Martín Abadi,et al. A Logic for Parametric Polymorphism , 1993, TLCA.
[12] Uday S. Reddy,et al. Parametricity as a notion of uniformity in reflexive graphs , 2002 .
[13] Michel Parigot,et al. Proofs of strong normalisation for second order classical natural deduction , 1997, Journal of Symbolic Logic.
[14] Gilles Barthe,et al. CPS translating inductive and coinductive types , 2002, PEPM '02.
[15] Ken-etsu Fujita,et al. Galois Embedding from Polymorphic Types into Existential Types , 2005, TLCA.
[16] Paul Taylor. SOBER SPACES AND CONTINUATIONS , 2002 .
[17] Andrzej Filinski. Declarative Continuations: an Investigation of Duality in Programming Language Semantics , 1989, Category Theory and Computer Science.
[18] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[19] Martín Abadi,et al. Formal parametric polymorphism , 1993, POPL '93.
[20] Gordon Plotkin,et al. Type Theory and Recursion Extended Abstract , 2003, LICS 2003.
[21] Peter Selinger,et al. Control categories and duality: on the categorical semantics of the lambda-mu calculus , 2001, Mathematical Structures in Computer Science.
[22] Some Remarks on Control Categories , 2003 .
[23] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[24] Thomas Streicher,et al. Classical logic, continuation semantics and abstract machines , 1998, Journal of Functional Programming.
[25] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[26] Masahito Hasegawa,et al. Parameterizations and Fixed-Point Operators on Control Categories , 2005, Fundam. Informaticae.
[27] Makoto Tatsuta,et al. Strong normalization proof with CPS-translation for second order classical natural deduction , 2003, J. Symb. Log..
[28] Michel Parigot,et al. Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.
[29] Philip Wadler,et al. Theorems for free! , 1989, FPCA.
[30] Bart Jacobs,et al. Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.
[31] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[32] Claudio V. Russo,et al. Operational Properties of Lily, a Polymorphic Linear Lambda Calculus with Recursion , 2001, HOOTS.
[33] Hayo Thielecke,et al. Answer Type Polymorphism in Call-by-Name Continuation Passing , 2004, ESOP.