Some Extremal Functions in Fourier Analysis, III

We obtain the best approximation in L1(ℝ), by entire functions of exponential type, for a class of even functions that includes e−λ|x|, where λ>0, log |x| and |x|α, where −1<α<1. We also give periodic versions of these results where the approximating functions are trigonometric polynomials of bounded degree.

[1]  G. Pólya,et al.  Fonctions entières et intégrales de Fourier multiples , 1936 .

[2]  G. Pólya,et al.  Fonctions entières et intégrales de fourier multiples , 1936 .

[3]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[5]  Michel Loève,et al.  Probability Theory I , 1977 .

[6]  E. Cheney Introduction to approximation theory , 1966 .

[7]  V. M. Zolotarev,et al.  An Absolute Estimate of the Remainder Term in the Central Limit Theorem , 1966 .

[8]  W. Rudin Real and complex analysis , 1968 .

[9]  V. M. Zolotarev,et al.  A sharpening of the inequality of Berry-Esseen , 1967 .

[10]  P. Heywood Trigonometric Series , 1968, Nature.

[11]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[12]  Harold S. Shapiro,et al.  Topics in Approximation Theory , 1971 .

[13]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[14]  Zur Variationsrechnung für die Verteilungsfunktionen , 1972 .

[15]  Håkan Prawitz Limits for a distribution, if the characteristic function is given in a finite domain , 1972 .

[16]  P. V. Beek,et al.  An application of Fourier methods to the problem of sharpening the Berry-Esseen inequality , 1972 .

[17]  Von H. Prawitz Ungleichungen für den absoluten betrag einer charakteristischen funktion , 1973 .

[18]  Berry-Esseen bounds and a theorem of Erdös and Turàn on uniform distribution $\mod 1$ , 1973 .

[19]  H. Montgomery,et al.  Hilbert’s inequality , 1974 .

[20]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[21]  Von H. Prawitz Weitere Ungleichungen für den absoluten Betrag einer charakteristischen Function , 1975 .

[22]  Håkan Prawitz On the remainder in the central limit theorem , 1975 .

[23]  H. Montgomery The analytic principle of the large sieve , 1978 .

[24]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[25]  J. Vaaler,et al.  A class of extremal functions for the Fourier transform , 1981 .

[26]  Small fractional parts of quadratic forms , 1982 .