Enabling Energy Efficiency and Polarity Control in Germanium Nanowire Transistors by Individually Gated Nanojunctions.
暂无分享,去创建一个
Thomas Mikolajick | Ehrenfried Zschech | Jens Trommer | Uwe Mühle | Tim Baldauf | André Heinzig | Barbara Adolphi | Markus Löffler | T. Mikolajick | E. Zschech | W. Weber | M. Löffler | U. Mühle | B. Adolphi | A. Heinzig | Marion Geidel | Annett Winzer | Paul M. Jordan | Jürgen Beister | Marion Geidel | Walter M. Weber | J. Trommer | A. Winzer | T. Baldauf | J. Beister | P. Jordan
[1] Akash Kumar,et al. Exploiting transistor-level reconfiguration to optimize combinational circuits , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
[2] Marcus Völp,et al. Reconfigurable nanowire transistors with multiple independent gates for efficient and programmable combinational circuits , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).
[3] 竹中 充. Experimental Study on Carrier Transport Properties in Extremely-Thin Body Ge-on-Insulator (GOI) p-MOSFETs with GOI Thickness down to 2 nm (シリコン材料・デバイス) , 2016 .
[4] Xiao Gong,et al. Germanium-based transistors for future high performance and low power logic applications , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).
[5] P. Ye,et al. First demonstration of Ge nanowire CMOS circuits: Lowest SS of 64 mV/dec, highest gmax of 1057 μS/μm in Ge nFETs and highest maximum voltage gain of 54 V/V in Ge CMOS inverters , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).
[6] M. Takenaka,et al. Experimental study on carrier transport properties in extremely-thin body Ge-on-insulator (GOI) p-MOSFETs with GOI thickness down to 2 nm , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).
[7] Kazuhito Tsukagoshi,et al. Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors. , 2015, ACS nano.
[8] Stefan Slesazeck,et al. Functionality-Enhanced Logic Gate Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors , 2015, IEEE Transactions on Nanotechnology.
[9] T. Mikolajick,et al. Impact of postdeposition annealing upon film properties of atomic layer deposition-grown Al2O3 on GaN , 2015 .
[10] Mark Y. Liu,et al. A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.
[11] T. Mikolajick,et al. Temperature dependent switching behaviour of nickel silicided undoped silicon nanowire devices , 2014 .
[12] Yusuf Leblebici,et al. Top–Down Fabrication of Gate-All-Around Vertically Stacked Silicon Nanowire FETs With Controllable Polarity , 2014, IEEE Transactions on Nanotechnology.
[13] Giovanni De Micheli,et al. Configurable Circuits Featuring Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.
[14] Wei Tang,et al. Solid-state reaction of nickel silicide and germanide contacts to semiconductor nanochannels , 2014 .
[15] Luca Gaetano Amarù,et al. Nanowire systems: technology and design , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] Mantu K. Hudait,et al. Germanium Based Field-Effect Transistors: Challenges and Opportunities , 2014, Materials.
[17] Seok-Hee Lee,et al. Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment. , 2014, ACS applied materials & interfaces.
[18] Thomas Mikolajick,et al. Dually active silicon nanowire transistors and circuits with equal electron and hole transport. , 2013, Nano letters.
[19] Giovanni De Micheli,et al. Efficient arithmetic logic gates using double-gate silicon nanowire FETs , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).
[20] S. Nakaharai,et al. Electrostatically-reversible polarity of dual-gated graphene transistors with He ion irradiated channel: Toward reconfigurable CMOS applications , 2012, 2012 International Electron Devices Meeting.
[21] J. Appenzeller,et al. Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. , 2012, Nano letters.
[22] Kang L. Wang,et al. Ferromagnetic germanide in Ge nanowire transistors for spintronics application. , 2012, ACS Nano.
[23] Stefan Slesazeck,et al. Reconfigurable silicon nanowire transistors. , 2012, Nano letters.
[24] A. Hikavyy,et al. Advancing CMOS beyond the Si roadmap with Ge and III/V devices , 2011, 2011 International Electron Devices Meeting.
[25] Kang L. Wang,et al. Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. , 2011, ACS nano.
[26] Kang L. Wang,et al. Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors , 2010, Nanotechnology.
[27] Christofer Hierold,et al. Reduction of gate hysteresis above ambient temperature via ambipolar pulsed gate sweeps in carbon nanotube field effect transistors for sensor applications , 2010 .
[28] Abbes Tahraoui,et al. Top-gated silicon nanowire transistors in a single fabrication step. , 2009, ACS nano.
[29] Y. Oshima,et al. Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density , 2008, IEEE Electron Device Letters.
[30] Marc Heyns,et al. Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide , 2007 .
[31] S. Sze,et al. Physics of Semiconductor Devices: Sze/Physics , 2006 .
[32] Erik Lind,et al. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.
[33] Charles M. Lieber,et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.
[34] Hemant Adhikari,et al. Germanium nanowire epitaxy: shape and orientation control. , 2006, Nano letters.
[35] J. Fischer,et al. Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires. , 2005, Nano letters.
[36] J. Knoch,et al. High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.
[37] Charles M. Lieber,et al. Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .
[38] R. Hübner,et al. Quantitative ARXPS investigation of systems with ultrathin aluminium oxide layers , 2004 .
[39] D. Fleetwood,et al. Effects of oxide traps, interface traps, and ‘‘border traps’’ on metal‐oxide‐semiconductor devices , 1993 .
[40] Charles S. Fadley,et al. Angle-resolved x-ray photoelectron spectroscopy , 1984 .