Enabling Energy Efficiency and Polarity Control in Germanium Nanowire Transistors by Individually Gated Nanojunctions.

Germanium is a promising material for future very large scale integration transistors, due to its superior hole mobility. However, germanium-based devices typically suffer from high reverse junction leakage due to the low band-gap energy of 0.66 eV and therefore are characterized by high static power dissipation. In this paper, we experimentally demonstrate a solution to suppress the off-state leakage in germanium nanowire Schottky barrier transistors. Thereto, a device layout with two independent gates is used to induce an additional energy barrier to the channel that blocks the undesired carrier type. In addition, the polarity of the same doping-free device can be dynamically switched between p- and n-type. The shown germanium nanowire approach is able to outperform previous polarity-controllable device concepts on other material systems in terms of threshold voltages and normalized on-currents. The dielectric and Schottky barrier interface properties of the device are analyzed in detail. Finite-element drift-diffusion simulations reveal that both leakage current suppression and polarity control can also be achieved at highly scaled geometries, providing solutions for future energy-efficient systems.

[1]  Akash Kumar,et al.  Exploiting transistor-level reconfiguration to optimize combinational circuits , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[2]  Marcus Völp,et al.  Reconfigurable nanowire transistors with multiple independent gates for efficient and programmable combinational circuits , 2016, 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[3]  竹中 充 Experimental Study on Carrier Transport Properties in Extremely-Thin Body Ge-on-Insulator (GOI) p-MOSFETs with GOI Thickness down to 2 nm (シリコン材料・デバイス) , 2016 .

[4]  Xiao Gong,et al.  Germanium-based transistors for future high performance and low power logic applications , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[5]  P. Ye,et al.  First demonstration of Ge nanowire CMOS circuits: Lowest SS of 64 mV/dec, highest gmax of 1057 μS/μm in Ge nFETs and highest maximum voltage gain of 54 V/V in Ge CMOS inverters , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[6]  M. Takenaka,et al.  Experimental study on carrier transport properties in extremely-thin body Ge-on-insulator (GOI) p-MOSFETs with GOI thickness down to 2 nm , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[7]  Kazuhito Tsukagoshi,et al.  Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors. , 2015, ACS nano.

[8]  Stefan Slesazeck,et al.  Functionality-Enhanced Logic Gate Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transistors , 2015, IEEE Transactions on Nanotechnology.

[9]  T. Mikolajick,et al.  Impact of postdeposition annealing upon film properties of atomic layer deposition-grown Al2O3 on GaN , 2015 .

[10]  Mark Y. Liu,et al.  A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.

[11]  T. Mikolajick,et al.  Temperature dependent switching behaviour of nickel silicided undoped silicon nanowire devices , 2014 .

[12]  Yusuf Leblebici,et al.  Top–Down Fabrication of Gate-All-Around Vertically Stacked Silicon Nanowire FETs With Controllable Polarity , 2014, IEEE Transactions on Nanotechnology.

[13]  Giovanni De Micheli,et al.  Configurable Circuits Featuring Dual-Threshold-Voltage Design With Three-Independent-Gate Silicon Nanowire FETs , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Wei Tang,et al.  Solid-state reaction of nickel silicide and germanide contacts to semiconductor nanochannels , 2014 .

[15]  Luca Gaetano Amarù,et al.  Nanowire systems: technology and design , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  Mantu K. Hudait,et al.  Germanium Based Field-Effect Transistors: Challenges and Opportunities , 2014, Materials.

[17]  Seok-Hee Lee,et al.  Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment. , 2014, ACS applied materials & interfaces.

[18]  Thomas Mikolajick,et al.  Dually active silicon nanowire transistors and circuits with equal electron and hole transport. , 2013, Nano letters.

[19]  Giovanni De Micheli,et al.  Efficient arithmetic logic gates using double-gate silicon nanowire FETs , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).

[20]  S. Nakaharai,et al.  Electrostatically-reversible polarity of dual-gated graphene transistors with He ion irradiated channel: Toward reconfigurable CMOS applications , 2012, 2012 International Electron Devices Meeting.

[21]  J. Appenzeller,et al.  Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire field effect transistors. , 2012, Nano letters.

[22]  Kang L. Wang,et al.  Ferromagnetic germanide in Ge nanowire transistors for spintronics application. , 2012, ACS Nano.

[23]  Stefan Slesazeck,et al.  Reconfigurable silicon nanowire transistors. , 2012, Nano letters.

[24]  A. Hikavyy,et al.  Advancing CMOS beyond the Si roadmap with Ge and III/V devices , 2011, 2011 International Electron Devices Meeting.

[25]  Kang L. Wang,et al.  Oxide-confined formation of germanium nanowire heterostructures for high-performance transistors. , 2011, ACS nano.

[26]  Kang L. Wang,et al.  Single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure transistors , 2010, Nanotechnology.

[27]  Christofer Hierold,et al.  Reduction of gate hysteresis above ambient temperature via ambipolar pulsed gate sweeps in carbon nanotube field effect transistors for sensor applications , 2010 .

[28]  Abbes Tahraoui,et al.  Top-gated silicon nanowire transistors in a single fabrication step. , 2009, ACS nano.

[29]  Y. Oshima,et al.  Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density , 2008, IEEE Electron Device Letters.

[30]  Marc Heyns,et al.  Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide , 2007 .

[31]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[32]  Erik Lind,et al.  Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. , 2006, Nano letters.

[33]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[34]  Hemant Adhikari,et al.  Germanium nanowire epitaxy: shape and orientation control. , 2006, Nano letters.

[35]  J. Fischer,et al.  Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires. , 2005, Nano letters.

[36]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[37]  Charles M. Lieber,et al.  Growth and transport properties of complementary germanium nanowire field-effect transistors , 2004 .

[38]  R. Hübner,et al.  Quantitative ARXPS investigation of systems with ultrathin aluminium oxide layers , 2004 .

[39]  D. Fleetwood,et al.  Effects of oxide traps, interface traps, and ‘‘border traps’’ on metal‐oxide‐semiconductor devices , 1993 .

[40]  Charles S. Fadley,et al.  Angle-resolved x-ray photoelectron spectroscopy , 1984 .