Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits

We study the quantum complexity class $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 of quantum operations implementable exactly by constant-depth polynomial-size quantum circuits with unbounded fan-out gates. Our main result is that the quantum OR operation is in $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0, which is an affirmative answer to the question posed by Høyer and Špalek. In sharp contrast to the strict hierarchy of the classical complexity classes: $${\mathsf{NC}^{0} \subsetneq \mathsf{AC}^{0} \subsetneq \mathsf{TC}^{0}}$$NC0⊊AC0⊊TC0, our result with Høyer and Špalek’s one implies the collapse of the hierarchy of the corresponding quantum ones: $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}=\mathsf{QAC}^\mathsf{0}_\mathsf{f}=\mathsf{QTC}^\mathsf{0}_\mathsf{f}}$$QNCf0=QACf0=QTCf0. Then, we show that there exists a constant-depth subquadratic-size quantum circuit for the quantum threshold operation. This allows us to obtain a better bound on the size difference between the $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 and $${\mathsf{QTC}^\mathsf{0}_\mathsf{f}}$$QTCf0 circuits for implementing the same operation. Lastly, we show that, if the quantum Fourier transform modulo a prime is in $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0, there exists a polynomial-time exact classical algorithm for a discrete logarithm problem using a $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 oracle. This implies that, under a plausible assumption, there exists a classically hard problem that is solvable exactly by a $${\mathsf{QNC}^\mathsf{0}_\mathsf{f}}$$QNCf0 circuit with gates for the quantum Fourier transform.

[1]  Yasuhiro Takahashi,et al.  Collapse of the Hierarchy of Constant-Depth Exact Quantum Circuits , 2013, Computational Complexity Conference.

[2]  Jehoshua Bruck,et al.  Depth efficient neural networks for division and related problems , 1993, IEEE Trans. Inf. Theory.

[3]  Debajyoti Bera,et al.  A lower bound method for quantum circuits , 2011, Inf. Process. Lett..

[4]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[5]  Elham Kashefi,et al.  Computational Depth Complexity of Measurement-Based Quantum Computation , 2009, TQC.

[6]  Heribert Vollmer,et al.  Introduction to Circuit Complexity , 1999, Texts in Theoretical Computer Science An EATCS Series.

[7]  Yong Zhang,et al.  Bounds on the Power of Constant-Depth Quantum Circuits , 2005, FCT.

[8]  Sean Hallgren,et al.  An improved quantum Fourier transform algorithm and applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[9]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[10]  W. V. Dam Quantum Computing Discrete Logarithms with the Help of a Preprocessed State , 2003 .

[11]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[12]  Robert Spalek,et al.  Quantum Fan-out is Powerful , 2005, Theory Comput..

[13]  Martin E. Hellman,et al.  An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[14]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[15]  Richard J. Lipton,et al.  Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..

[16]  Stephen C. Pohlig,et al.  An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance , 2022, IEEE Trans. Inf. Theory.

[17]  Earl T. Campbell,et al.  Non-adaptive measurement-based quantum computation and multi-party Bell inequalities , 2010, 1009.5213.

[18]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[19]  Ryan O'Donnell,et al.  Some topics in analysis of boolean functions , 2008, STOC.

[20]  Michele Mosca,et al.  Exact quantum Fourier transforms and discrete logarithm algorithms , 2003 .

[21]  Yong Zhang,et al.  Quantum lower bounds for fanout , 2006, Quantum Inf. Comput..

[22]  Heribert Vollmer,et al.  Introduction to Circuit Complexity: A Uniform Approach , 2010 .

[23]  Martin Nilsson,et al.  Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..

[24]  Steven Homer,et al.  Small depth quantum circuits , 2007, SIGA.

[25]  Cristopher Moore,et al.  Counting, fanout and the complexity of quantum ACC , 2002, Quantum Inf. Comput..

[26]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[27]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[28]  Robert Spalek,et al.  Quantum Circuits with Unbounded Fan-out , 2002, STACS.