The Efficiency of Assimilating Satellite Soil Moisture Retrievals in a Land Data Assimilation System Using Different Rainfall Error Models

AbstractThe efficiency of assimilating near-surface soil moisture retrievals from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) observations in a Land Data Assimilation System (LDAS) is assessed using satellite rainfall forcing and two different satellite rainfall error models: a complex, multidimensional satellite rainfall error model (SREM2D) and the simpler (control) model (CTRL) used in the NASA Goddard Earth Observing System Model, version 5 LDAS. For the study domain of Oklahoma, LDAS soil moisture estimates improve over the satellite retrievals and the open-loop (no assimilation) land surface model estimates, exhibiting higher daily anomaly correlation coefficients (e.g., 0.36 in the open loop, 0.38 in the AMSR-E, and 0.50 in LDAS for surface soil moisture). The LDAS soil moisture estimates also match the performance of a benchmark model simulation forced with high-quality radar precipitation. Compared to using the CTRL rainfall error model in LDAS, using the more compl...

[1]  E. Anagnostou,et al.  The Impact of Rainfall Error Characterization on the Estimation of Soil Moisture Fields in a Land Data Assimilation System , 2012 .

[2]  Pingping Xie,et al.  A conceptual model for constructing high‐resolution gauge‐satellite merged precipitation analyses , 2011 .

[3]  Emmanouil N. Anagnostou,et al.  The Effect of Satellite Rainfall Error Modeling on Soil Moisture Prediction Uncertainty , 2011 .

[4]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[5]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[6]  D. L. Hawkins Using U Statistics to Derive the Asymptotic Distribution of Fisher's Z Statistic , 1989 .

[7]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[8]  Wade T. Crow,et al.  Impact of Incorrect Model Error Assumptions on the Sequential Assimilation of Remotely Sensed Surface Soil Moisture , 2006 .

[9]  R. Reichle Data assimilation methods in the Earth sciences , 2008 .

[10]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[11]  Praveen Kumar,et al.  A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure , 2000 .

[12]  Faisal Hossain,et al.  Numerical investigation of the impact of uncertainties in satellite rainfall estimation and land surface model parameters on simulation of soil moisture , 2005 .

[13]  Christian D. Kummerow,et al.  Global Precipitation Measurement , 2008 .

[14]  Faisal Hossain,et al.  A two-dimensional satellite rainfall error model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[16]  Wade T. Crow,et al.  The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System , 2011 .

[17]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[18]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[19]  Emmanouil N. Anagnostou,et al.  Regional Differences in Overland Rainfall Estimation from PR-Calibrated TMI Algorithm , 2005 .

[20]  Jiancheng Shi,et al.  The Soil Moisture Active Passive (SMAP) Mission , 2010, Proceedings of the IEEE.