An exact approach for the Vertex Coloring Problem

Given an undirected graph G=(V,E), the Vertex Coloring Problem (VCP) requires to assign a color to each vertex in such a way that colors on adjacent vertices are different and the number of colors used is minimized. In this paper, we present an exact algorithm for the solution of VCP based on the well-known Set Covering formulation of the problem. We propose a Branch-and-Price algorithm embedding an effective heuristic from the literature and some methods for the solution of the slave problem, as well as two alternative branching schemes. Computational experiments on instances from the literature show the effectiveness of the algorithm, which is able to solve, for the first time to proven optimality, five of the benchmark instances in the literature, and reduce the optimality gap of many others.

[1]  Wayne J. Pullan,et al.  Simple ingredients leading to very efficient heuristics for the maximum clique problem , 2008, J. Heuristics.

[2]  Susanne Wetzel,et al.  Heuristics on lattice basis reduction in practice , 2002, JEAL.

[3]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[4]  Alain Hertz,et al.  An adaptive memory algorithm for the k-coloring problem , 2003, Discret. Appl. Math..

[5]  Nicolas Zufferey,et al.  Ant Local Search and its efficient adaptation to graph colouring , 2010, J. Oper. Res. Soc..

[6]  Nicolas Zufferey,et al.  A graph coloring heuristic using partial solutions and a reactive tabu scheme , 2008, Comput. Oper. Res..

[7]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[8]  A. Gamst,et al.  Some lower bounds for a class of frequency assignment problems , 1986, IEEE Transactions on Vehicular Technology.

[9]  Pierre Hansen,et al.  Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results , 2005, Discret. Optim..

[10]  Patric R. J. Östergård,et al.  A New Algorithm for the Maximum-Weight Clique Problem , 1999, Electron. Notes Discret. Math..

[11]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[12]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[13]  Teruo Higashino,et al.  A Minimal-State Processing Search Algorithm for Graph Coloring Problems , 2000 .

[14]  Edward C. Sewell,et al.  An improved algorithm for exact graph coloring , 1993, Cliques, Coloring, and Satisfiability.

[15]  Vahid Lotfi,et al.  A graph coloring algorithm for large scale scheduling problems , 1986, Comput. Oper. Res..

[16]  Paolo Toth,et al.  A Metaheuristic Approach for the Vertex Coloring Problem , 2008, INFORMS J. Comput..

[17]  Nicolas Zufferey,et al.  A Reactive Tabu Search Using Partial Solutions for the Graph Coloring Problem , 2004 .

[18]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[19]  Craig A. Morgenstern Distributed coloration neighborhood search , 1993, Cliques, Coloring, and Satisfiability.

[20]  J. R. Brown Chromatic Scheduling and the Chromatic Number Problem , 1972 .

[21]  Panos M. Pardalos,et al.  Handbook of combinatorial optimization. Supplement , 2005 .

[22]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[23]  A. A. Farley A Note on Bounding a Class of Linear Programming Problems, Including Cutting Stock Problems , 1990, Oper. Res..

[24]  Tai-Kuo Woo,et al.  Resource allocation in a dynamically partitionable bus network using a graph coloring algorithm , 1991, IEEE Trans. Commun..

[25]  Isabel Méndez-Díaz,et al.  A cutting plane algorithm for graph coloring , 2008, Discret. Appl. Math..

[26]  Nicolas Zufferey,et al.  Graph colouring approaches for a satellite range scheduling problem , 2008, J. Sched..

[27]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[28]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[29]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[30]  Alain Hertz,et al.  Finding the chromatic number by means of critical graphs , 2000, Electron. Notes Discret. Math..

[31]  John L. Hennessy,et al.  The priority-based coloring approach to register allocation , 1990, TOPL.

[32]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[33]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[34]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[35]  FischettiMatteo,et al.  A Heuristic Method for the Set Covering Problem , 1999 .

[36]  Paolo Toth,et al.  A survey on vertex coloring problems , 2010, Int. Trans. Oper. Res..

[37]  José M. Valério de Carvalho,et al.  Using Extra Dual Cuts to Accelerate Column Generation , 2005, INFORMS J. Comput..

[38]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.