Eigenvalues of the Laplace operator with potential under the backward Ricci flow on locally homogeneous 3-manifolds

Let $\lambda(t)$ be the first eigenvalue of $-\Delta+aR\, (a>0)$ under the backward Ricci flow on locally homogeneous 3-manifolds, where $R$ is the scalar curvature. In the Bianchi case, we get the upper and lower bounds of $\lambda(t)$. In particular, we show that when the the backward Ricci flow converges to a sub-Riemannian geometry after a proper re-scaling, $\lambda^{+}(t)$ approaches zero, where $\lambda^{+}(t)=\max\{\lambda(t),0\}$.

[1]  Anton Thalmaier,et al.  ENTROPY AND LOWEST EIGENVALUE ON EVOLVING MANIFOLDS , 2013, 1305.0472.

[2]  Jing Mao Monotonicity of the first eigenvalue of the Laplace and the p-Laplace operators under a forced mean curvature flow , 2013, 1310.5437.

[3]  Shouwen Fang,et al.  FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE YAMABE FLOW , 2016 .

[4]  Estimate and monotonicity of the first eigenvalue under the Ricci flow , 2012 .

[5]  Liang Zhao The First Eigenvalue of p-Laplace Operator Under Powers of the mth Mean Curvature Flow , 2013 .

[6]  Dan Knopf,et al.  Quasi-convergence of model geometries under the Ricci flow , 2001 .

[7]  B. Chow,et al.  Hamilton's Ricci Flow , 2018 .

[8]  Eigenvalues under the Ricci flow of model geometries , 2016, 1602.04597.

[9]  P. Ho,et al.  Evolution of the Steklov eigenvalue under geodesic curvature flow , 2019, Manuscripta mathematica.

[10]  P. Zhu,et al.  EIGENVALUES OF GEOMETRIC OPERATORS RELATED TO THE WITTEN LAPLACIAN UNDER THE RICCI FLOW , 2017, Glasgow Mathematical Journal.

[11]  A. Razavi,et al.  EVOLUTION AND MONOTONICITY FOR A CLASS OF QUANTITIES ALONG THE RICCI-BOURGUIGNON FLOW , 2019 .

[12]  Jia-Yong Wu,et al.  First eigenvalue of the p-Laplace operator along the Ricci flow , 2009, 0912.4775.

[13]  P. Ho First eigenvalues of geometric operators under the Yamabe flow , 2018, 1803.07787.

[14]  J. Guckenheimer,et al.  The backward behavior of the Ricci and cross-curvature flows on SL (2,R) , 2009, 0906.4157.

[15]  Ricci flow on locally homogeneous closed 4-manifolds , 2005, math/0502170.

[16]  Meihua Yang,et al.  Complete Continuity of Eigen-Pairs of Weighted Dirichlet Eigenvalue Problem , 2018 .

[17]  Li Ma Eigenvalue Monotonicity for the Ricci-Hamilton Flow , 2004, math/0403065.

[18]  L. Saloff-Coste,et al.  Backward Ricci flow on locally homogeneous 3-manifolds , 2009 .

[19]  Lin Feng Wang Monotonicity of Eigenvalues and Functionals Along the Ricci–Bourguignon Flow , 2019 .

[20]  Abimbola Ayodeji Abolarinwa Eigenvalues of the weighted Laplacian under the extended Ricci flow , 2016, Advances in Geometry.

[21]  J. Isenberg,et al.  Ricci flow of locally homogeneous geometries on closed manifolds , 1992 .

[22]  Bin Chen,et al.  Monotonicity of eigenvalues of geometric operaters along the Ricci-Bourguignon flow , 2015, 1512.08158.

[23]  Eigenvalues under the Backward Ricci Flow on Locally Homogeneous Closed 3-manifolds , 2016, 1602.07824.

[24]  Xiaodong Cao Eigenvalues of $$(-\triangle + \frac{R}{2})$$ on manifolds with nonnegative curvature operator , 2006 .

[25]  Eigenvalues and energy functionals with monotonicity formulae under Ricci flow , 2007, math/0701548.

[26]  L. Saloff-Coste,et al.  Backward Ricci Flow on Locally Homogeneous Three-manifolds , 2008, 0810.3352.

[27]  P. Zhu,et al.  Evolution and monotonicity of eigenvalues under the Ricci flow , 2015 .

[28]  Xiaodong Cao Eigenvalues of on manifolds with nonnegative curvature operator , 2007 .

[29]  Jia-Yong Wu First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow , 2011 .

[30]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[31]  H. Cao On Dimension Reduction in the Kähler-Ricci Flow , 2004 .

[32]  Yi Li Eigenvalues and entropies under the harmonic-Ricci flow , 2010, 1011.1697.

[33]  Xiaodong Cao FIRST EIGENVALUES OF GEOMETRIC OPERATORS UNDER THE RICCI FLOW , 2007, 0710.3947.