The Voronoi Diagram of Circles and Its Application to the Visualization of the Growth of Particles

Circles are frequently used for modelling the growth of particle aggregates through the Johnson-Mehl tessellation, that is a special instance of the Voronoi diagram of circles. Voronoi diagrams allow one to answer proximity queries after locating a query point in the Voronoi zone it belongs to. The dual graph of the Voronoi diagram is called the Delaunay graph. In this paper, we first show a necessary and sufficient condition of connectivity of the Voronoi diagram of circles. Then, we show how the Delaunay graph of circles (the dual graph of the Voronoi diagram of circles) can be computed exactly, and in a much simpler way, by computing the eigenvalues of a two by two matrix. Finally, we present how the Voronoi diagram of circles can be used to model the growth of particle aggregates. We use the Poisson point process in the Voronoi diagram of circles to generate the Johnson-Mehl tesselation. The Johnson-Mehl model is a Poisson Voronoi growth model, in which nuclei are generated asynchronously using a Poisson point process, and grow at the same radial speed. Growth models produce spatial patterns as a result of simple growth processes and their visualization is important in many technical processes.

[1]  Mariette Yvinec,et al.  An exact predicate for the optimal construction of the additively weighted Voronoi diagram , 2002 .

[2]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[3]  Ioannis Z. Emiris,et al.  Root comparison techniques applied to computing the additively weighted Voronoi diagram , 2003, SODA '03.

[4]  François Anton,et al.  Voronoi diagrams of semi-algebraic sets , 2003 .

[5]  B. Boots,et al.  Some Models of the Random Subdivision of Space , 1973 .

[6]  D. Stoyan Random Sets: Models and Statistics , 1998 .

[7]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[8]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[9]  David G. Kirkpatrick,et al.  An exact algebraic predicate for maintaining the topology of the voronoi diagram for circles , 2002, CCCG.

[10]  Ioannis Z. Emiris,et al.  The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..

[11]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[12]  Christopher M. Gold,et al.  Dynamic additively weighted voronoi diagrams made easy , 1998, CCCG.

[13]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[14]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[15]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[16]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[17]  Olivier Devillers,et al.  Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..

[18]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[19]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology , 2001, Computer Aided Geometric Design.

[20]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[21]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[22]  Deok-Soo Kim,et al.  Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry , 2001, Comput. Aided Geom. Des..

[23]  Anishchik,et al.  Three-Dimensional Apollonian Packing as a Model for Dense Granular Systems. , 1995, Physical review letters.

[24]  Robust algorithm for k-gon voronoi diagram construction , 2002, CCCG.

[25]  C. Gold,et al.  An algorithm for the dynamic construction and maintenance of Additively Weighted Voronoi diagrams , 2003 .

[26]  Ioannis Z. Emiris,et al.  ECG IST-2000-26473 Effective Computational Geometry for Curves and Surfaces ECG Technical Report No . : ECG-TR-122201-01 Predicates for the Planar Additively Weighted Voronoi Diagram , 1993 .

[27]  E. Bolker,et al.  Generalized Dirichlet tessellations , 1986 .

[28]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[29]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[30]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[31]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[32]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[33]  Deok-Soo Kim,et al.  Voronoi Diagram of a Circle Set Constructed from Voronoi Diagram of a Point Set , 2000, ISAAC.

[34]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .