The Voronoi Diagram of Circles and Its Application to the Visualization of the Growth of Particles
暂无分享,去创建一个
[1] Mariette Yvinec,et al. An exact predicate for the optimal construction of the additively weighted Voronoi diagram , 2002 .
[2] J. Sack,et al. Handbook of computational geometry , 2000 .
[3] Ioannis Z. Emiris,et al. Root comparison techniques applied to computing the additively weighted Voronoi diagram , 2003, SODA '03.
[4] François Anton,et al. Voronoi diagrams of semi-algebraic sets , 2003 .
[5] B. Boots,et al. Some Models of the Random Subdivision of Space , 1973 .
[6] D. Stoyan. Random Sets: Models and Statistics , 1998 .
[7] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[8] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[9] David G. Kirkpatrick,et al. An exact algebraic predicate for maintaining the topology of the voronoi diagram for circles , 2002, CCCG.
[10] Ioannis Z. Emiris,et al. The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..
[11] W. A. Johnson. Reaction Kinetics in Processes of Nucleation and Growth , 1939 .
[12] Christopher M. Gold,et al. Dynamic additively weighted voronoi diagrams made easy , 1998, CCCG.
[13] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[14] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[15] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .
[16] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[17] Olivier Devillers,et al. Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..
[18] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[19] Deok-Soo Kim,et al. Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology , 2001, Computer Aided Geometric Design.
[20] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[21] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[22] Deok-Soo Kim,et al. Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry , 2001, Comput. Aided Geom. Des..
[23] Anishchik,et al. Three-Dimensional Apollonian Packing as a Model for Dense Granular Systems. , 1995, Physical review letters.
[24] Robust algorithm for k-gon voronoi diagram construction , 2002, CCCG.
[25] C. Gold,et al. An algorithm for the dynamic construction and maintenance of Additively Weighted Voronoi diagrams , 2003 .
[26] Ioannis Z. Emiris,et al. ECG IST-2000-26473 Effective Computational Geometry for Curves and Surfaces ECG Technical Report No . : ECG-TR-122201-01 Predicates for the Planar Additively Weighted Voronoi Diagram , 1993 .
[27] E. Bolker,et al. Generalized Dirichlet tessellations , 1986 .
[28] K. Hensel. Journal für die reine und angewandte Mathematik , 1892 .
[29] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[30] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[31] Rolf Klein,et al. Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.
[32] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[33] Deok-Soo Kim,et al. Voronoi Diagram of a Circle Set Constructed from Voronoi Diagram of a Point Set , 2000, ISAAC.
[34] David A. Cox,et al. Using Algebraic Geometry , 1998 .