Leak Resistant Arithmetic

In this paper we show how the usage of Residue Number Systems (RNS) can easily be turned into a natural defense against many side-channel attacks (SCA). We introduce a Leak Resistant Arithmetic (LRA), and present its capacities to defeat timing, power (SPA, DPA) and electromagnetic (EMA) attacks.

[2]  Eric Peeters,et al.  Parallel FPGA implementation of RSA with residue number systems - can side-channel threats be avoided? , 2003, 2003 46th Midwest Symposium on Circuits and Systems.

[3]  Richard J. Lipton,et al.  On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract) , 1997, EUROCRYPT.

[4]  Siva Sai Yerubandi,et al.  Differential Power Analysis , 2002 .

[5]  Walter Fumy,et al.  Advances in Cryptology — EUROCRYPT ’97 , 2001, Lecture Notes in Computer Science.

[6]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[7]  Dakshi Agrawal,et al.  Multi-channel Attacks , 2003, CHES.

[8]  Laurent Imbert,et al.  a full RNS implementation of RSA , 2004, IEEE Transactions on Computers.

[9]  Atsushi Shimbo,et al.  Cox-Rower Architecture for Fast Parallel Montgomery Multiplication , 2000, EUROCRYPT.

[10]  Christof Paar,et al.  Cryptographic Hardware and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings , 2006, CHES.

[11]  Marc Joye,et al.  The Montgomery Powering Ladder , 2002, CHES.

[12]  Daniel M. Gordon,et al.  A Survey of Fast Exponentiation Methods , 1998, J. Algorithms.

[13]  Peter R. Turner,et al.  Residue polynomial systems , 2002, Theor. Comput. Sci..

[14]  Jean-Claude Bajard,et al.  Modular multiplication and base extensions in residue number systems , 2001, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001.

[15]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[16]  Dakshi Agrawal,et al.  The EM Side-Channel(s) , 2002, CHES.

[17]  P. L. Montgomery Speeding the Pollard and elliptic curve methods of factorization , 1987 .

[18]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[19]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[20]  Neal Koblitz,et al.  Advances in Cryptology — CRYPTO ’96 , 2001, Lecture Notes in Computer Science.

[21]  Eli Biham,et al.  Differential Fault Analysis of Secret Key Cryptosystems , 1997, CRYPTO.

[22]  David Naccache,et al.  Cryptographic Hardware and Embedded Systems — CHES 2001 , 2001 .

[23]  Louis Goubin,et al.  DES and Differential Power Analysis (The "Duplication" Method) , 1999, CHES.

[24]  Tolga Acar,et al.  Analyzing and comparing Montgomery multiplication algorithms , 1996, IEEE Micro.

[25]  Atsushi Shimbo,et al.  Implementation of RSA Algorithm Based on RNS Montgomery Multiplication , 2001, CHES.

[26]  Bart Preneel,et al.  Advances in cryptology - EUROCRYPT 2000 : International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000 : proceedings , 2000 .

[27]  Ramdas Kumaresan,et al.  Fast Base Extension Using a Redundant Modulus in RNS , 1989, IEEE Trans. Computers.

[28]  Christof Paar,et al.  Cryptographic Hardware and Embedded Systems - CHES 2003 , 2003, Lecture Notes in Computer Science.

[29]  Reinhard Posch,et al.  Modulo Reduction in Residue Number Systems , 1995, IEEE Trans. Parallel Distributed Syst..

[30]  P. L. Montgomery Modular multiplication without trial division , 1985 .

[31]  Jean-Jacques Quisquater,et al.  Montgomery Exponentiation with no Final Subtractions: Improved Results , 2000, CHES.

[32]  Burton S. Kaliski Advances in Cryptology - CRYPTO '97 , 1997 .

[33]  W. Kenneth Jenkins,et al.  The Design of Error Checkers for Self-Checking Residue Number Arithmetic , 1983, IEEE Transactions on Computers.

[34]  H. Garner The residue number system , 1959, IRE-AIEE-ACM '59 (Western).

[35]  Christof Paar,et al.  Cryptographic Hardware and Embedded Systems - CHES 2002 , 2003, Lecture Notes in Computer Science.

[36]  Francis Olivier,et al.  Electromagnetic Analysis: Concrete Results , 2001, CHES.