Three‐dimensional, prestack, plane wave migration of teleseismic P‐to‐S converted phases: 1. Theory

[1] We present the theoretical foundations for a prestack migration technique to image teleseismic P-to-S converted phases. The method builds on teleseismic P wave deconvolution, pseudostation stacking [Neal and Pavlis, 1999] and on the idea of using a plane wave decomposition for imaging as introduced by Treitel et al. [1982]. Deconvolution operators are constructed by pseudostation stacking of the array aligned to the incident P wave arrival times to produce a space-variable deconvolution operator. The resulting data are then muted to remove the deconvolved direct P wave pulse and pseudostation stacked over a grid of feasible slowness vectors. The pseudostation stack interpolates the wave field onto a regular grid along Earth's surface producing a series (one per slowness vector) of uniformly sampled three-dimensional data cubes (two space variables and time). The plane wave components can be propagated downward using a form of approximate ray tracing with a three-dimensional Earth model. This yields a series of distorted cubes topologically equivalent to the original uniformly sampled data cubes. These data volumes are summed as a weighted stack with the weights derived from an integration formula for inverse scattering based on the generalized Radon transform. This allows an image of the subsurface to be constructed on an event by event basis beneath the array. We apply this technique to data from the Lodore array that was deployed in northwestern Colorado. The results suggest the presence of a major lithospheric-scale discontinuity defined by a south dipping boundary.

[1]  R. S. Houston,et al.  The Cheyenne Belt: analysis of a Proterozoic suture in southern Wyoming , 1984 .

[2]  Robert B. Smith,et al.  Strength and rheology of the western U.S. Cordillera , 1995 .

[3]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set , 2001 .

[4]  Gregory Beylkin,et al.  A new slant on seismic imaging: Migration and integral geometry , 1987 .

[5]  C. Langston Scattering of teleseismic body waves under Pasadena, California , 1989 .

[6]  Arthur L. Lerner-Lam,et al.  Crustal thickness variations across the Colorado Rocky Mountains from teleseismic receiver functions , 1995 .

[7]  Jack K. Cohen,et al.  Three‐dimensional Born inversion with an arbitrary reference , 1986 .

[8]  W. Schneider Analyzing operators of 3-D imaging software with impulse responses , 1999 .

[9]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[10]  Ru-Shan Wu,et al.  Scattering characteristics of elastic waves by an elastic heterogeneity , 1985 .

[11]  S. Grand,et al.  Deep structure beneath the Southern Rocky Mountains from the Rocky Mountain Front Broadband Seismic Experiment , 1998 .

[12]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[13]  K. Karlstrom,et al.  Persistent influence of Proterozoic accretionary boundaries in the tectonic evolution of southwestern North America Interaction of cratonic grain and mantle modification events , 1998 .

[14]  M. Bostock Anisotropic upper-mantle stratigraphy and architecture of the Slave craton , 1997, Nature.

[15]  A. Sheehan,et al.  Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track , 1997 .

[16]  Gregory Beylkin,et al.  Spatial Resolution of Migration Algorithms , 1985 .

[17]  G. Pavlis,et al.  Imaging P‐to‐S conversions with multichannel receiver functions , 1999 .

[18]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 1. Theory for oblique incidence , 2001 .

[19]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[20]  P. Shearer,et al.  Seismic migration processing of P‐SV converted phases for mantle discontinuity structure beneath the Snake River Plain, western United States , 2000 .

[21]  Kenneth G. Dueker,et al.  Mantle discontinuity structure beneath the Colorado Rocky Mountains and High Plains , 1998 .

[22]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[23]  Michael Oristaglio,et al.  Inversion Procedure for Inverse Scattering within the Distorted-Wave Born Approximation , 1983 .

[24]  G. Pavlis,et al.  Imaging P-to-S conversions with broad-band seismic arrays using multichannel time-domain deconvolution , 2001 .

[25]  Gerard T. Schuster,et al.  Resolution limits of migrated images , 1999 .

[26]  J. Nábělek,et al.  Deconvolution of teleseismic body waves for enhancing structure beneath a seismometer array , 1999, Bulletin of the Seismological Society of America.

[27]  Sobolev,et al.  Seismic Evidence for a Detached Indian Lithospheric Mantle Beneath Tibet. , 1999, Science.

[28]  S. R. Taylor,et al.  Crustal structure at Regional Seismic Test Network stations determined from inversion of broadband teleseismic P waveforms , 1987 .

[29]  Gary L. Pavlis,et al.  Three‐dimensional, prestack, plane wave migration of teleseismic P‐to‐S converted phases: 2. Stacking multiple events , 2003 .

[30]  P. Shearer,et al.  Experiments in migration processing of SS precursor data to image upper mantle discontinuity structure , 1999 .

[31]  Charles A. Langston,et al.  The effect of planar dipping structure on source and receiver responses for constant ray parameter , 1977 .

[32]  Sven Treitel,et al.  Plane‐wave decomposition of seismograms , 1982 .

[33]  S. Smithson,et al.  Geophysical constraints on the deep structure of the Cheyenne belt, southeastern Wyoming , 1998 .

[34]  M. Bostock A seismic image of the upper mantle beneath the North American Craton , 1996 .

[35]  E. Lüschen,et al.  Lithosphere-Scale Seismic Image of the Southern Urals from Explosion-Source Reflection Profiling , 1996, Science.

[36]  M. Bostock Mantle stratigraphy and evolution of the Slave province , 1998 .

[37]  Charles A. Langston,et al.  Structure under Mount Rainier, Washington, inferred from teleseismic body waves , 1979 .

[38]  N. R. Hill,et al.  Prestack Gaussian‐beam depth migration , 2001 .

[39]  Michael G. Bostock,et al.  Migration of scattered teleseismic body waves , 1999 .

[40]  Michael G. Bostock,et al.  Multiparameter two‐dimensional inversion of scattered teleseismic body waves 2. Numerical examples , 2001 .

[41]  J. Bernard Minster,et al.  Simultaneous time-domain deconvolution with application to the computation of receiver functions , 1995 .

[42]  M. Weber,et al.  Receiver function arrays: a reflection seismic approach , 2000 .

[43]  L. P. Vinnik,et al.  Detection of waves converted from P to SV in the mantle , 1977 .

[44]  G. L. Farmer,et al.  Lower crustal and upper mantle xenoliths along the Cheyenne belt and vicinity , 1998 .