Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts

[1]  P. Mars,et al.  Oxidations carried out by means of vanadium oxide catalysts , 1954 .

[2]  G. Schrauzer,et al.  Photolysis of water and photoreduction of nitrogen on titanium dioxide , 1977 .

[3]  A. Sclafani,et al.  Dinitrogen Electrochemical Reduction to Ammonia over Iron Cathode in Aqueous Medium , 1983 .

[4]  C. Pickett,et al.  Electrosynthesis of ammonia , 1985, Nature.

[5]  J. Becker,et al.  Nitrogen fixation: Part II1. Nitrogen reduction by electrochemically generated vanadium(II) promoted by various organic ligands in basic methanol , 1988 .

[6]  Shlomit Avraham,et al.  Nitrogen fixation: Part III. Electrochemical reduction of hydrazido (-NNH2) Mo and W complexes. Selective formation of NH3 under mild conditions , 1990 .

[7]  N. Furuya,et al.  Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst , 1990 .

[8]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[9]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  F. Lévy,et al.  Characterization of sputter-deposited chromium nitride thin films for hard coatings , 1997 .

[12]  Vaclav Smil,et al.  Global Population and the Nitrogen Cycle , 1997 .

[13]  G. Marnellos,et al.  Ammonia synthesis at atmospheric pressure , 1998, Science.

[14]  Vaclav Smil,et al.  Detonator of the population explosion , 1999, Nature.

[15]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[16]  G. Marnellos,et al.  Synthesis of Ammonia at Atmospheric Pressure with the Use of Solid State Proton Conductors , 2000 .

[17]  G. Kyriacou,et al.  Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell , 2000 .

[18]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[19]  Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. , 2003, Journal of the American Chemical Society.

[20]  Richard R. Schrock,et al.  Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center , 2003, Science.

[21]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[22]  Henry J. Ramos,et al.  Thin-film deposition of ZrN using a plasma sputter-type negative ion source , 2004 .

[23]  T. Nohira,et al.  Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure , 2005 .

[24]  Y. Arango,et al.  Study of TiN and ZrN thin films grown by cathodic arc technique , 2006 .

[25]  Jin Wang,et al.  Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe 0.7 Cu 0.3− x Ni x O 3 ( x = 0−0.3) cathode at atmospheric pressure and lower temperature , 2009 .

[26]  Thomas Bligaard,et al.  Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations , 2010 .

[27]  H. Jónsson,et al.  A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. , 2012, Physical chemistry chemical physics : PCCP.

[28]  E. Mercken,et al.  CORRIGENDUM: SRT1720 improves survival and healthspan of obese mice , 2013, Scientific Reports.

[29]  John T. S. Irvine,et al.  Synthesis of ammonia directly from air and water at ambient temperature and pressure , 2013, Scientific Reports.

[30]  T. Bligaard,et al.  DFT based study of transition metal nano-clusters for electrochemical NH3 production. , 2013, Physical chemistry chemical physics : PCCP.

[31]  S. Badwal,et al.  Review of Electrochemical Ammonia Production Technologies and Materials , 2013 .

[32]  T. Vegge,et al.  Electrochemical ammonia production on molybdenum nitride nanoclusters. , 2013, Physical chemistry chemical physics : PCCP.

[33]  S. Ólafsson,et al.  Ultra-thin poly-crystalline TiN films grown by HiPIMS on MgO(100) — In-situ resistance study of the initial stage of growth , 2013 .

[34]  T. Vegge,et al.  The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production , 2014, Beilstein journal of nanotechnology.

[35]  E. Skúlason,et al.  A systematic, first-principles study of the structural preference and magnetic properties of mononitrides of the d-block metals , 2014 .

[36]  Stuart Licht,et al.  Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3 , 2014, Science.

[37]  刘化章 氨合成催化剂100年:实践、启迪和挑战 , 2014 .

[38]  A. Vourros,et al.  Reaction Rate Enhancement During the Electrocatalytic Synthesis of Ammonia in a BaZr0.7Ce0.2Y0.1O2.9 Solid Electrolyte Cell , 2015, Topics in Catalysis.

[39]  Peter H. Pfromm,et al.  Rational design of metal nitride redox materials for solar-driven ammonia synthesis , 2015, Interface Focus.

[40]  E. Skúlason,et al.  The Mechanism of Industrial Ammonia Synthesis Revisited: Calculations of the Role of the Associative Mechanism , 2015 .

[41]  Younes Abghoui,et al.  Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. , 2015, Physical chemistry chemical physics : PCCP.

[42]  C. Catlow,et al.  Nitrogen Activation in a Mars–van Krevelen Mechanism for Ammonia Synthesis on Co3Mo3N , 2015 .

[43]  Hannes Jónsson,et al.  Computational Study of Electrochemical CO2 Reduction at Transition Metal Electrodes , 2015, ICCS.

[44]  E. Iglesia,et al.  Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces. , 2015, Accounts of chemical research.

[45]  Younes Abghoui,et al.  Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions , 2015, ICCS.

[46]  C. Catlow,et al.  DFT-D3 Study of Molecular N2 and H2 Activation on Co3Mo3N Surfaces , 2016 .

[47]  H. Jónsson,et al.  Faraday efficiency and mechanism of electrochemical surface reactions: CO2 reduction and H2 formation on Pt(111). , 2016, Faraday discussions.

[48]  Tejs Vegge,et al.  Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V – A DFT guide for experiments , 2016 .

[49]  T. Sugawara,et al.  Ammonia synthesis by N2 and steam electrolysis in solid-state cells at 220°C and atmospheric pressure , 2016 .

[50]  Michael Stoukides,et al.  Progress in the Electrochemical Synthesis of Ammonia , 2017 .

[51]  Younes Abghoui,et al.  Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group III–VII transition metal mononitrides , 2017 .

[52]  M. Symes,et al.  Recent progress towards the electrosynthesis of ammonia from sustainable resources , 2017 .