Circuits and local computation

This paper contains two parts. In Part I, we show that polynomial-size monotone threshold circuits of depth <italic>k</italic> form a proper hierarchy in parameter <italic>k</italic>. This implies in particular that monotone <italic>TC</italic><supscrpt>0</supscrpt> is properly contained in <italic>NC</italic><supscrpt>1</supscrpt>. In Part II, we introduce a new concept, called <italic>local function</italic>, which tries to characterize when a function can be efficiently computed using only localized processing elements. It serves as a unifying framework for viewing related and sometimes apparently unrelated results. In particular, it will be demonstrated that the recent results on lower bounds for monotone circuits by Razborov [Ra1] and Karchmer and Wigderson [KW], as well as a main theorem in Part I of this paper, can be regarded as proving certain functions to be nonlocal. We will also suggest an approach based on locality for attacking the conjecture that (nonmonotone) <italic>TC</italic><supscrpt>0</supscrpt> is properly contained in <italic>NC</italic><supscrpt>1</supscrpt>.

[1]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[2]  Marvin Minsky,et al.  Perceptrons: expanded edition , 1988 .

[3]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[4]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[5]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[6]  Jehoshua Bruck,et al.  Harmonic Analysis of Polynomial Threshold Functions , 1990, SIAM J. Discret. Math..

[7]  Avi Wigderson,et al.  Monotone Circuits for Connectivity Require Super-Logarithmic Depth , 1990, SIAM J. Discret. Math..

[8]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[9]  Pavel Pudlák,et al.  Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[10]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[11]  Yoshinori Uesaka Analog Perceptron: Its Decomposition and Order , 1975, Inf. Control..

[12]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[13]  Yuri Gurevich,et al.  Monotone versus positive , 1987, JACM.

[14]  H. T. Kung,et al.  I/O complexity: The red-blue pebble game , 1981, STOC '81.

[15]  Ravi B. Boppana,et al.  Threshold Functions and Bounded Depth Monotone Circuits , 1986, J. Comput. Syst. Sci..

[16]  Mihalis Yannakakis,et al.  On monotone formulae with restricted depth , 1984, STOC '84.

[17]  Georg Schnitger,et al.  Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..

[18]  Harold Abelson,et al.  Corrigendum: Towards a Theory of Local and Global in Computation , 1978, Theoretical Computer Science.

[19]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[20]  Ravi B. Boppana,et al.  Threshold functions and bounded deptii monotone circuits , 1984, STOC '84.

[21]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[22]  Avi Wigderson,et al.  Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.