Circuits and local computation
暂无分享,去创建一个
[1] Uzi Vishkin,et al. Constant Depth Reducibility , 1984, SIAM J. Comput..
[2] Marvin Minsky,et al. Perceptrons: expanded edition , 1988 .
[3] Michael Sipser,et al. Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[4] Miklós Ajtai,et al. ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..
[5] Roman Smolensky,et al. Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.
[6] Jehoshua Bruck,et al. Harmonic Analysis of Polynomial Threshold Functions , 1990, SIAM J. Discret. Math..
[7] Avi Wigderson,et al. Monotone Circuits for Connectivity Require Super-Logarithmic Depth , 1990, SIAM J. Discret. Math..
[8] David A. Mix Barrington,et al. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.
[9] Pavel Pudlák,et al. Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[10] A. Yao. Separating the polynomial-time hierarchy by oracles , 1985 .
[11] Yoshinori Uesaka. Analog Perceptron: Its Decomposition and Order , 1975, Inf. Control..
[12] Johan Håstad,et al. Almost optimal lower bounds for small depth circuits , 1986, STOC '86.
[13] Yuri Gurevich,et al. Monotone versus positive , 1987, JACM.
[14] H. T. Kung,et al. I/O complexity: The red-blue pebble game , 1981, STOC '81.
[15] Ravi B. Boppana,et al. Threshold Functions and Bounded Depth Monotone Circuits , 1986, J. Comput. Syst. Sci..
[16] Mihalis Yannakakis,et al. On monotone formulae with restricted depth , 1984, STOC '84.
[17] Georg Schnitger,et al. Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..
[18] Harold Abelson,et al. Corrigendum: Towards a Theory of Local and Global in Computation , 1978, Theoretical Computer Science.
[19] Michael Sipser,et al. Borel sets and circuit complexity , 1983, STOC.
[20] Ravi B. Boppana,et al. Threshold functions and bounded deptii monotone circuits , 1984, STOC '84.
[21] Éva Tardos,et al. The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..
[22] Avi Wigderson,et al. Monotone circuits for connectivity require super-logarithmic depth , 1990, STOC '88.