Long Term Real Trajectory Reuse through Region Goal Satisfaction

This paper is motivated by the objective of improving the realism of real-time simulated crowds by reducing short term collision avoidance through long term anticipation of pedestrian trajectories. For this aim, we choose to reuse outdoor pedestrian trajectories obtained with non-invasive means. This initial step is achieved by analyzing the recordings of multiple synchronized video cameras. In a second off-line stage, we fit as long as possible trajectory segments within predefined paths made of a succession of region goals. The concept of region goal is exploited to enforce the principle of “sufficient satisfaction”: it allows the pedestrians to relax the prescribed trajectory to the traversal of successive region goals. However, even if a fitted trajectory is modified due to collision avoidance, we are still able to make long-term trajectory anticipation and distribute the collision avoidance shift over a long distance.

[1]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[2]  Luc Van Gool,et al.  Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[4]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[5]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[6]  Pascal Fua,et al.  Multicamera People Tracking with a Probabilistic Occupancy Map , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Adrien Treuille,et al.  Continuum crowds , 2006, ACM Trans. Graph..

[8]  H. Simon,et al.  Rational choice and the structure of the environment. , 1956, Psychological review.

[9]  Ronan Boulic,et al.  Relaxed Steering towards Oriented Region Goals , 2008, MIG.

[10]  Min Je Park Guiding flows for controlling crowds , 2009, The Visual Computer.

[11]  David C. Brogan,et al.  Realistic human walking paths , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[12]  Alan Penn,et al.  Natural Movement: Or, Configuration and Attraction in Urban Pedestrian Movement , 1993 .

[13]  Junghyun Ahn,et al.  Optimized motion simplification for crowd animation: Research Articles , 2006 .

[14]  Daniel Thalmann,et al.  Crowd patches: populating large-scale virtual environments for real-time applications , 2009, I3D '09.

[15]  Han Hoogeveen,et al.  Path Planning for Groups Using Column Generation , 2010, MIG.

[16]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[17]  Julien Pettré Populate Your Game Scene , 2008, MIG.

[18]  Taesoo Kwon,et al.  Group motion editing , 2008, SIGGRAPH 2008.

[19]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Yiorgos Chrysanthou,et al.  Scalable pedestrian simulation for virtual cities , 2004, VRST '04.

[21]  Nancy S. Pollard,et al.  Evaluating motion graphs for character animation , 2007, TOGS.

[22]  Petros Faloutsos,et al.  Egocentric affordance fields in pedestrian steering , 2009, I3D '09.

[23]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[24]  Nicolas Courty,et al.  Crowd motion capture , 2007 .

[25]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[26]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[27]  Daniel Thalmann,et al.  Real-time crowd motion planning , 2008, The Visual Computer.

[28]  Mark H. Overmars,et al.  Simulating the local behaviour of small pedestrian groups , 2010, VRST '10.

[29]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[30]  Mark H. Overmars,et al.  A Predictive Collision Avoidance Model for Pedestrian Simulation , 2009, MIG.