Statistical Indices for Risk Tracking in Longitudinal Studies

The ability to track a subject’s risk factors and health outcomes over time is one of the main advantages of longitudinal studies over the simpler cross-sectional studies. An important issue of time-trend tracking is to define appropriate statistical indices to quantitatively measure the tracking abilities of variables of interest over time. We review in this paper a number of local statistical tracking indices derived from the conditional distributions, and propose a series of global statistical tracking indices based on the weighted means of the corresponding local tracking indices. We investigate the statistical properties of the new global tracking indices in a simulation study, and demonstrate the usefulness of these tracking indices through their application to a longitudinal study of cardiovascular risk factors for children and adolescents.

[1]  Colin O. Wu,et al.  Estimation of rank-tracking probabilities using nonparametric mixed-effects models for longitudinal data , 2014 .

[2]  Gail D Pearson,et al.  Prevalence and incidence of hypertension in adolescent girls. , 2010, The Journal of pediatrics.

[3]  Damla Şentürk,et al.  Functional Varying Coefficient Models for Longitudinal Data , 2010 .

[4]  R. Carroll,et al.  The relationship between virologic and immunologic responses in AIDS clinical research using mixed-effects varying-coefficient models with measurement error. , 2003, Biostatistics.

[5]  Colin O. Wu,et al.  Nonparametric Estimation of Conditional Distributions and Rank-Tracking Probabilities With Time-Varying Transformation Models in Longitudinal Studies , 2013 .

[6]  A. Dyer,et al.  Cardiovascular risk factors in young adults. The CARDIA baseline monograph. , 1991, Controlled clinical trials.

[7]  M A Waclawiw,et al.  Longitudinal correlates of change in blood pressure in adolescent girls. , 1998, Hypertension.

[8]  Debra L Franko,et al.  Childhood overweight and cardiovascular disease risk factors: the National Heart, Lung, and Blood Institute Growth and Health Study. , 2007, The Journal of pediatrics.

[9]  Daniel Levy,et al.  The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective , 2014, The Lancet.

[10]  Colin O. Wu,et al.  Nonparametric Estimation of Conditional Distribution Functions and Rank-Tracking Probabilities With Longitudinal Data , 2013 .

[11]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[12]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[13]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[14]  D. Atkins,et al.  American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. , 2003, Circulation.

[15]  R. Lauer,et al.  Factors Affecting Tracking of Coronary Heart Disease Risk Factors in Children a , 1991 .

[16]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[17]  R. Koenker,et al.  Quantile regression methods for reference growth charts , 2006, Statistics in medicine.

[18]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[19]  M. A. Foulkes,et al.  An index of tracking for longitudinal data , 1981 .

[20]  R. Lauer,et al.  Tracking of Blood Lipids and Blood Pressures in School Age Children: The Muscatine Study , 1978, Circulation.

[21]  C. A. McMahan An Index of Tracking , 1981 .

[22]  E. Arnesen,et al.  Tracking of cardiovascular risk factors: the Tromsø study, 1979-1995. , 2001, American journal of epidemiology.

[23]  Robert E. Weiss,et al.  An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves , 1996 .

[24]  B. Rosner,et al.  The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents , 2004 .

[25]  Jianhua Z. Huang,et al.  Joint modelling of paired sparse functional data using principal components. , 2008, Biometrika.

[26]  J. Ware,et al.  Tracking: Prediction of Future Values from Serial Measurements , 1981 .

[27]  Shumei S. Guo,et al.  2000 CDC Growth Charts for the United States: methods and development. , 2002, Vital and health statistics. Series 11, Data from the National Health Survey.

[28]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[29]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[30]  J. Hart,et al.  Kernel Regression Estimation Using Repeated Measurements Data , 1986 .