Structure of the host-recognition device of Staphylococcus aureus phage ϕ11

[1]  C. Wolz,et al.  An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus , 2016, Scientific Reports.

[2]  A. Desmyter,et al.  The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules , 2016, mBio.

[3]  Vance G. Fowler,et al.  Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management , 2015, Clinical Microbiology Reviews.

[4]  C. Cambillau,et al.  The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors , 2015, Molecular microbiology.

[5]  P. Leiman,et al.  Structure and biochemical characterization of bacteriophage phi92 endosialidase. , 2015, Virology.

[6]  A. Cuervo,et al.  Conformational Changes Leading to T7 DNA Delivery upon Interaction with the Bacterial Receptor* , 2015, The Journal of Biological Chemistry.

[7]  Charles A. Bowman,et al.  Exposing the Secrets of Two Well-Known Lactobacillus casei Phages, J-1 and PL-1, by Genomic and Structural Analysis , 2014, Applied and Environmental Microbiology.

[8]  C. Cambillau,et al.  Cryo-Electron Microscopy Structure of Lactococcal Siphophage 1358 Virion , 2014, Journal of Virology.

[9]  C. Cambillau,et al.  Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity , 2014, mBio.

[10]  Kristin N. Parent,et al.  OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella , 2014, Molecular microbiology.

[11]  J. Lindsay Staphylococcus aureus genomics and the impact of horizontal gene transfer. , 2014, International journal of medical microbiology : IJMM.

[12]  I. Tavernelli,et al.  Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Christian Cambillau,et al.  Structures and host-adhesion mechanisms of lactococcal siphophages , 2014, Front. Microbiol..

[14]  C. Wolz,et al.  Phages of Staphylococcus aureus and their impact on host evolution. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[15]  E. Girard,et al.  Crystal Structure of pb9, the Distal Tail Protein of Bacteriophage T5: a Conserved Structural Motif among All Siphophages , 2013, Journal of Virology.

[16]  F. Gabel,et al.  Assessing the Conformational Changes of pb5, the Receptor-binding Protein of Phage T5, upon Binding to Its Escherichia coli Receptor FhuA* , 2013, The Journal of Biological Chemistry.

[17]  Marta Munar,et al.  Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens , 2013, Nature Communications.

[18]  M. Drancourt,et al.  The First Structure of a Mycobacteriophage, the Mycobacterium abscessus subsp. bolletii Phage Araucaria , 2013, Journal of Virology.

[19]  Bo Hu,et al.  The Bacteriophage T7 Virion Undergoes Extensive Structural Remodeling During Infection , 2013, Science.

[20]  P. Leiman,et al.  Crystal structure and location of gp131 in the bacteriophage phiKZ virion. , 2012, Virology.

[21]  M. van Heel,et al.  Visualizing a Complete Siphoviridae Member by Single-Particle Electron Microscopy: the Structure of Lactococcal Phage TP901-1 , 2012, Journal of Virology.

[22]  M. Paternostre,et al.  New insights into pb5, the receptor binding protein of bacteriophage T5, and its interaction with its Escherichia coli receptor FhuA. , 2012, Biochimie.

[23]  D. Veesler,et al.  Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism , 2012, Proceedings of the National Academy of Sciences.

[24]  P. Leiman,et al.  Phage pierces the host cell membrane with the iron-loaded spike. , 2012, Structure.

[25]  Christian Cambillau,et al.  A Common Evolutionary Origin for Tailed-Bacteriophage Functional Modules and Bacterial Machineries , 2011, Microbiology and Molecular Reviews.

[26]  A. Peschel,et al.  Wall Teichoic Acid-Dependent Adsorption of Staphylococcal Siphovirus and Myovirus , 2011, Journal of bacteriology.

[27]  D. Veesler,et al.  The Opening of the SPP1 Bacteriophage Tail, a Prevalent Mechanism in Gram-positive-infecting Siphophages* , 2011, The Journal of Biological Chemistry.

[28]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  P. Neumann,et al.  Kinetic and structural characterization of bacterial glutaminyl cyclases from Zymomonas mobilis and Myxococcus xanthus , 2010, Biological chemistry.

[30]  J. Otero,et al.  Structure of the bacteriophage T4 long tail fiber receptor-binding tip , 2010, Proceedings of the National Academy of Sciences.

[31]  G. Sciara,et al.  Solution and electron microscopy characterization of lactococcal phage baseplates expressed in Escherichia coli. , 2010, Journal of structural biology.

[32]  D. Veesler,et al.  Crystal Structure of Bacteriophage SPP1 Distal Tail Protein (gp19.1) , 2010, The Journal of Biological Chemistry.

[33]  G. Sciara,et al.  Structure of lactococcal phage p2 baseplate and its mechanism of activation , 2010, Proceedings of the National Academy of Sciences.

[34]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[35]  J. Rubinstein,et al.  The crystal structure of bacteriophage HK97 gp6: defining a large family of head-tail connector proteins. , 2010, Journal of molecular biology.

[36]  C. Péchoux,et al.  Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle* , 2010, The Journal of Biological Chemistry.

[37]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[38]  Fabrice Gorrec,et al.  The MORPHEUS protein crystallization screen , 2009, Journal of applied crystallography.

[39]  J. M. Sauder,et al.  Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin , 2009, Proceedings of the National Academy of Sciences.

[40]  A. Davidson,et al.  The phage λ major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system , 2009, Proceedings of the National Academy of Sciences.

[41]  Liisa Holm,et al.  Searching protein structure databases with DaliLite v.3 , 2008, Bioinform..

[42]  Heping Zheng,et al.  Data mining of metal ion environments present in protein structures. , 2008, Journal of inorganic biochemistry.

[43]  José María Carazo,et al.  Image processing for electron microscopy single-particle analysis using XMIPP , 2008, Nature Protocols.

[44]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[45]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[46]  C. Cambillau,et al.  Crystal Structure of the Receptor-Binding Protein Head Domain from Lactococcus lactis Phage bIL170 , 2006, Journal of Virology.

[47]  Sylvain Moineau,et al.  Modular Structure of the Receptor Binding Proteins of Lactococcus lactis Phages , 2006, Journal of Biological Chemistry.

[48]  Sylvain Moineau,et al.  Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses , 2006, Nature Structural &Molecular Biology.

[49]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[50]  M. Rossmann,et al.  Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Achim Dickmanns,et al.  Crystal structure of the polysialic acid–degrading endosialidase of bacteriophage K1F , 2005, Nature Structural &Molecular Biology.

[52]  R. M. Burnett,et al.  Does common architecture reveal a viral lineage spanning all three domains of life? , 2004, Molecular cell.

[53]  G. Bricogne,et al.  Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. , 2004, Acta crystallographica. Section D, Biological crystallography.

[54]  J M Carazo,et al.  XMIPP: a new generation of an open-source image processing package for electron microscopy. , 2004, Journal of structural biology.

[55]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[56]  Fumio Arisaka,et al.  Three-dimensional structure of bacteriophage T4 baseplate , 2003, Nature Structural Biology.

[57]  R. M. Burnett,et al.  The receptor binding protein P2 of PRD1, a virus targeting antibiotic-resistant bacteria, has a novel fold suggesting multiple functions. , 2003, Structure.

[58]  M. Rossmann,et al.  The tail lysozyme complex of bacteriophage T4. , 2003, The international journal of biochemistry & cell biology.

[59]  Thomas C. Terwilliger,et al.  Statistical density modification with non-crystallographic symmetry , 2002, Acta crystallographica. Section D, Biological crystallography.

[60]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[61]  M. Desmadril,et al.  Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5. , 2002, Journal of molecular biology.

[62]  Fumio Arisaka,et al.  Structure of the cell-puncturing device of bacteriophage T4 , 2002, Nature.

[63]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[64]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[65]  G J Kleywegt,et al.  Software for handling macromolecular envelopes. , 1999, Acta crystallographica. Section D, Biological crystallography.

[66]  C Vonrhein,et al.  Locating proper non-crystallographic symmetry in low-resolution electron-density maps with the program GETAX. , 1999, Acta crystallographica. Section D, Biological crystallography.

[67]  G J Kleywegt,et al.  Not your average density. , 1997, Structure.

[68]  G J Kleywegt,et al.  Validation of protein models from Calpha coordinates alone. , 1997, Journal of molecular biology.

[69]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[70]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.