A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving

We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. We establish stability results for our firstand second-order schemes under a general setting, and present ample numerical results to validate the new approach.

[1]  Jingwei Hu,et al.  A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations , 2020, Numerische Mathematik.

[2]  Mary C. Pugh,et al.  The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions , 1996 .

[3]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[4]  Buyang Li,et al.  Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations , 2020, SIAM J. Sci. Comput..

[5]  C F Curtiss,et al.  Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[6]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[7]  Yuanyuan Liu,et al.  High Order Finite Difference WENO Schemes for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[8]  Houyuan Jiang,et al.  Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations , 1997, Math. Oper. Res..

[9]  Jie Shen,et al.  Bound/Positivity Preserving and Energy Stable Scalar auxiliary Variable Schemes for Dissipative Systems: Applications to Keller-Segel and Poisson-Nernst-Planck Equations , 2021, SIAM J. Sci. Comput..

[10]  Cheng Wang,et al.  Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential , 2017, J. Comput. Phys. X.

[11]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[12]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[13]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[15]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[16]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[17]  Li Wang,et al.  Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations , 2016, Math. Comput..

[18]  Yan Xu,et al.  Positivity Preserving Limiters for Time-Implicit Higher Order Accurate Discontinuous Galerkin Discretizations , 2018, SIAM J. Sci. Comput..

[19]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[20]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[21]  Lili Ju,et al.  Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes , 2020, SIAM Rev..

[22]  JIE SHEN,et al.  Global Constraints Preserving Scalar Auxiliary Variable Schemes for Gradient Flows , 2020, SIAM J. Sci. Comput..

[23]  Qing Cheng,et al.  Multiple Scalar Auxiliary Variable (MSAV) Approach and its Application to the Phase-Field Vesicle Membrane Model , 2018, SIAM J. Sci. Comput..

[24]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[25]  Shusen Xie,et al.  A High Order Accurate Bound-Preserving Compact Finite Difference Scheme for Scalar Convection Diffusion Equations , 2018, SIAM J. Numer. Anal..

[26]  Kejia Pan,et al.  A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson-Nernst-Planck System , 2019, J. Sci. Comput..

[27]  Kazufumi Ito,et al.  On a semi-smooth Newton method and its globalization , 2009, Math. Program..

[28]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[29]  Xiangxiong Zhang,et al.  On the monotonicity and discrete maximum principle of the finite difference implementation of \(C^0\) - \(Q^2\) finite element method , 2019, Numerische Mathematik.

[30]  Qing Cheng,et al.  Generalized SAV approaches for gradient systems , 2021, J. Comput. Appl. Math..

[31]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[32]  Andrea L. Bertozzi,et al.  Positivity-Preserving Numerical Schemes for Lubrication-Type Equations , 1999, SIAM J. Numer. Anal..

[33]  BOUND/POSITIVITY PRESERVING AND ENERGY STABLE SAV SCHEMES FOR DISSIPATIVE SYSTEMS: APPLICATIONS TO KELLER-SEGEL AND POISSON-NERNST-PLANCK EQUATIONS , 2021 .

[34]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[35]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[36]  Weizhang Huang,et al.  The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations , 2012, J. Comput. Phys..