Analysis of the Rational Krylov Subspace and ADI Methods for Solving the Lyapunov Equation
暂无分享,去创建一个
Valeria Simoncini | Vladimir Druskin | Leonid Knizhnerman | V. Simoncini | L. Knizhnerman | V. Druskin
[1] H. Sadok,et al. Global FOM and GMRES algorithms for matrix equations , 1999 .
[2] Serkan Gugercin,et al. H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..
[3] Peter Benner,et al. On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..
[4] Michel Crouzeix,et al. Numerical range and functional calculus in Hilbert space , 2007 .
[5] Adhemar Bultheel,et al. Algorithm 882: Near-Best Fixed Pole Rational Interpolation with Applications in Spectral Methods , 2008, TOMS.
[6] Stefan Vandewalle,et al. A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations , 2010, SIAM J. Matrix Anal. Appl..
[7] V. N. Sorokin,et al. Rational Approximations and Orthogonality , 1991 .
[8] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .
[9] G. Flagg,et al. An Interpolation-Based Approach to the OptimalH1 Model Reduction , 2009 .
[10] Khalide Jbilou,et al. ADI preconditioned Krylov methods for large Lyapunov matrix equations , 2010 .
[11] Dieter Gaier. Regular Article: The Faber Operator and its Boundedness , 1999 .
[12] K. Jbilou,et al. Projection methods for large Lyapunov matrix equations , 2006 .
[13] Adhemar Bultheel,et al. Orthogonal Rational Functions , 1999, Cambridge monographs on applied and computational mathematics.
[14] Danny C. Sorensen,et al. A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.
[15] J. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .
[16] Valeria Simoncini,et al. A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..
[17] Valeria Simoncini,et al. Convergence analysis of the extended Krylov subspace method for the Lyapunov equation , 2011, Numerische Mathematik.
[18] A. Gončar,et al. Zolotarev Problems Connected with Rational Functions , 1969 .
[19] S. Ellacott. ON THE FABER TRANSFORM AND EFFICIENT NUMERICAL RATIONAL APPROXIMATION , 1983 .
[20] John Sabino,et al. Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Methods , 2006 .
[21] Valeria Simoncini,et al. Adaptive rational Krylov subspaces for large-scale dynamical systems , 2011, Syst. Control. Lett..
[22] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[23] I. Jaimoukha,et al. Krylov subspace methods for solving large Lyapunov equations , 1994 .
[24] Jacob K. White,et al. Low Rank Solution of Lyapunov Equations , 2002, SIAM J. Matrix Anal. Appl..
[25] Eugene L. Wachspress,et al. New ADI Model Problem Applications , 1986, FJCC.
[26] P. K. Suetin. Series of Faber polynomials , 1998 .
[27] Matthew He. Approximation of Rational Functions on Complex Domain , 1984 .
[28] Y. Saad,et al. Numerical solution of large Lyapunov equations , 1989 .
[29] Vladimir Druskin,et al. Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..
[30] A A Gončar. ON THE SPEED OF RATIONAL APPROXIMATION OF SOME ANALYTIC FUNCTIONS , 1978 .
[31] M. T. Qureshi,et al. Lyapunov Matrix Equation in System Stability and Control , 2008 .
[32] T. Apostol. Introduction to analytic number theory , 1976 .
[33] Axel Ruhe. Rational Krylov sequence methods for eigenvalue computation , 1984 .
[34] Imad M. Jaimoukha,et al. Oblique Production Methods for Large Scale Model Reduction , 1995, SIAM J. Matrix Anal. Appl..
[35] Vladimir Druskin,et al. On Optimal Convergence Rate of the Rational Krylov Subspace Reduction for Electromagnetic Problems in Unbounded Domains , 2009, SIAM J. Numer. Anal..
[36] A. Antoulas,et al. H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .
[37] Eugene L. Wachspress,et al. Alternating direction implicit iteration for systems with complex spectra , 1991 .
[38] Kyle A. Gallivan,et al. Model reduction via truncation: an interpolation point of view , 2003 .
[39] Thilo Penzl,et al. A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..
[40] Valeria Simoncini,et al. Convergence Analysis of Projection Methods for the Numerical Solution of Large Lyapunov Equations , 2009, SIAM J. Numer. Anal..
[41] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[42] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[43] R. Langer. Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .
[44] Andrew G. Glen,et al. APPL , 2001 .
[45] E. Tyrtyshnikov. Mosaic-Skeleton approximations , 1996 .
[46] Eugene L. Wachspress,et al. Solution of lyapunov equations by alternating direction implicit iteration , 1991 .
[47] Chad Lieberman,et al. On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..
[48] Eric James Grimme,et al. Krylov Projection Methods for Model Reduction , 1997 .
[49] Ivan Oseledets,et al. Lower bounds for separable approximations of the Hilbert kernel , 2007 .
[50] Satoru Takenaka. On the Orthogonal Functions and a New Formula of Interpolation , 1925 .
[51] E. Wachspress. Iterative solution of the Lyapunov matrix equation , 1988 .
[52] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[53] Paul Van Dooren,et al. A rational Lanczos algorithm for model reduction , 1996, Numerical Algorithms.
[54] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..