Analysis of the Rational Krylov Subspace and ADI Methods for Solving the Lyapunov Equation

For large scale problems, an effective approach for solving the algebraic Lyapunov equation consists of projecting the problem onto a significantly smaller space and then solving the reduced order matrix equation. Although Krylov subspaces have been used for a long time, only more recent developments have shown that rational Krylov subspaces can be a competitive alternative to the classical and very popular alternating direction implicit (ADI) recurrence. In this paper we develop a convergence analysis of the rational Krylov subspace method (RKSM) based on the Kronecker product formulation and on potential theory. Moreover, we propose new enlightening relations between this approach and the ADI method. Our results provide solid theoretical ground for recent numerical evidence of the superiority of RKSM over ADI when the involved parameters cannot be computed optimally, as is the case in many practical application problems.

[1]  H. Sadok,et al.  Global FOM and GMRES algorithms for matrix equations , 1999 .

[2]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[3]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[4]  Michel Crouzeix,et al.  Numerical range and functional calculus in Hilbert space , 2007 .

[5]  Adhemar Bultheel,et al.  Algorithm 882: Near-Best Fixed Pole Rational Interpolation with Applications in Spectral Methods , 2008, TOMS.

[6]  Stefan Vandewalle,et al.  A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations , 2010, SIAM J. Matrix Anal. Appl..

[7]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[8]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .

[9]  G. Flagg,et al.  An Interpolation-Based Approach to the OptimalH1 Model Reduction , 2009 .

[10]  Khalide Jbilou,et al.  ADI preconditioned Krylov methods for large Lyapunov matrix equations , 2010 .

[11]  Dieter Gaier Regular Article: The Faber Operator and its Boundedness , 1999 .

[12]  K. Jbilou,et al.  Projection methods for large Lyapunov matrix equations , 2006 .

[13]  Adhemar Bultheel,et al.  Orthogonal Rational Functions , 1999, Cambridge monographs on applied and computational mathematics.

[14]  Danny C. Sorensen,et al.  A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.

[15]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[16]  Valeria Simoncini,et al.  A New Iterative Method for Solving Large-Scale Lyapunov Matrix Equations , 2007, SIAM J. Sci. Comput..

[17]  Valeria Simoncini,et al.  Convergence analysis of the extended Krylov subspace method for the Lyapunov equation , 2011, Numerische Mathematik.

[18]  A. Gončar,et al.  Zolotarev Problems Connected with Rational Functions , 1969 .

[19]  S. Ellacott ON THE FABER TRANSFORM AND EFFICIENT NUMERICAL RATIONAL APPROXIMATION , 1983 .

[20]  John Sabino,et al.  Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Methods , 2006 .

[21]  Valeria Simoncini,et al.  Adaptive rational Krylov subspaces for large-scale dynamical systems , 2011, Syst. Control. Lett..

[22]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[23]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[24]  Jacob K. White,et al.  Low Rank Solution of Lyapunov Equations , 2002, SIAM J. Matrix Anal. Appl..

[25]  Eugene L. Wachspress,et al.  New ADI Model Problem Applications , 1986, FJCC.

[26]  P. K. Suetin Series of Faber polynomials , 1998 .

[27]  Matthew He Approximation of Rational Functions on Complex Domain , 1984 .

[28]  Y. Saad,et al.  Numerical solution of large Lyapunov equations , 1989 .

[29]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[30]  A A Gončar ON THE SPEED OF RATIONAL APPROXIMATION OF SOME ANALYTIC FUNCTIONS , 1978 .

[31]  M. T. Qureshi,et al.  Lyapunov Matrix Equation in System Stability and Control , 2008 .

[32]  T. Apostol Introduction to analytic number theory , 1976 .

[33]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[34]  Imad M. Jaimoukha,et al.  Oblique Production Methods for Large Scale Model Reduction , 1995, SIAM J. Matrix Anal. Appl..

[35]  Vladimir Druskin,et al.  On Optimal Convergence Rate of the Rational Krylov Subspace Reduction for Electromagnetic Problems in Unbounded Domains , 2009, SIAM J. Numer. Anal..

[36]  A. Antoulas,et al.  H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .

[37]  Eugene L. Wachspress,et al.  Alternating direction implicit iteration for systems with complex spectra , 1991 .

[38]  Kyle A. Gallivan,et al.  Model reduction via truncation: an interpolation point of view , 2003 .

[39]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[40]  Valeria Simoncini,et al.  Convergence Analysis of Projection Methods for the Numerical Solution of Large Lyapunov Equations , 2009, SIAM J. Numer. Anal..

[41]  Lothar Reichel,et al.  Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..

[42]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[43]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[44]  Andrew G. Glen,et al.  APPL , 2001 .

[45]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[46]  Eugene L. Wachspress,et al.  Solution of lyapunov equations by alternating direction implicit iteration , 1991 .

[47]  Chad Lieberman,et al.  On Adaptive Choice of Shifts in Rational Krylov Subspace Reduction of Evolutionary Problems , 2010, SIAM J. Sci. Comput..

[48]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[49]  Ivan Oseledets,et al.  Lower bounds for separable approximations of the Hilbert kernel , 2007 .

[50]  Satoru Takenaka On the Orthogonal Functions and a New Formula of Interpolation , 1925 .

[51]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[52]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[53]  Paul Van Dooren,et al.  A rational Lanczos algorithm for model reduction , 1996, Numerical Algorithms.

[54]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..