Probabilistic may/must testing: retaining probabilities by restricted schedulers

This paper considers the probabilistic may/must testing theory for processes having external, internal, and probabilistic choices. We observe that the underlying testing equivalence is too strong and distinguishes between processes that are observationally equivalent. The problem arises from the observation that the classical compose-and-schedule approach yields unrealistic overestimation of the probabilities, a phenomenon that has been recently well studied from the point of view of compositionality, in the context of randomized protocols and in probabilistic model checking. To that end, we propose a new testing theory, aiming at preserving the probability information in a parallel context. The resulting testing equivalence is insensitive to the exact moment the internal and the probabilistic choices occur. We also give an alternative characterization of the testing preorder as a probabilistic ready-trace preorder.

[1]  S. Georgievska Probability and Hiding in Concurrent Processes ( thesis abstract ) , 2011 .

[2]  Mário S. Alvim,et al.  Safe Equivalences for Security Properties , 2010, IFIP TCS.

[3]  Rance Cleaveland,et al.  Infinite Probabilistic and Nonprobabilistic Testing , 1998, FSTTCS.

[4]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[5]  Ronald A. Howard,et al.  Semi-Markov and decision processes , 1971 .

[6]  Arend Rensink,et al.  Fair testing , 1995, Inf. Comput..

[7]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[8]  Andrew William Roscoe,et al.  The Theory and Practice of Concurrency , 1997 .

[9]  Karen Seidel,et al.  Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..

[10]  Catuscia Palamidessi,et al.  Making Random Choices Invisible to the Scheduler , 2007, CONCUR.

[11]  Nancy A. Lynch,et al.  Observing Branching Structure through Probabilistic Contexts , 2007, SIAM J. Comput..

[12]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[13]  Roberto Segala,et al.  Testing Probabilistic Automata , 1996, CONCUR.

[14]  Pedro R. D'Argenio,et al.  On the Expressive Power of Schedulers in Distributed Probabilistic Systems , 2009, Electron. Notes Theor. Comput. Sci..

[15]  Valentín Valero Ruiz,et al.  Algebraic theory of probabilistic and nondeterministic processes , 2003, J. Log. Algebraic Methods Program..

[16]  Nancy A. Lynch,et al.  Switched PIOA: Parallel composition via distributed scheduling , 2006, Theor. Comput. Sci..

[17]  Annabelle McIver,et al.  Probabilistic imperative programming: a rigorous approach , 2007 .

[18]  Rocco De Nicola,et al.  Linear-Time and May-Testing in a Probabilistic Reactive Setting , 2011, FMOODS/FORTE.

[19]  Annabelle McIver,et al.  Refinement-oriented probability for CSP , 1996, Formal Aspects of Computing.

[20]  Thomas A. Henzinger,et al.  Compositional Methods for Probabilistic Systems , 2001, CONCUR.

[21]  Amir Pnueli,et al.  Linear and Branching Structures in the Semantics and Logics of Reactive Systems , 1985, ICALP.

[22]  Gavin Lowe,et al.  Representing Nondeterministic and Probabilistic Behaviour in Reactive Processes , 1993 .

[23]  Annabelle McIver,et al.  Probabilistic predicate transformers , 1996, TOPL.

[24]  Sonja Georgievska,et al.  Probabilistic CSP: Preserving the Laws via Restricted Schedulers , 2012, MMB/DFT.

[25]  Bas Luttik,et al.  Branching Bisimilarity with Explicit Divergence , 2009, Fundam. Informaticae.

[26]  Edward J. Sondik,et al.  The optimal control of par-tially observable Markov processes , 1971 .

[27]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[28]  Annabelle McIver,et al.  Abstraction, Refinement and Proof for Probabilistic Systems , 2004, Monographs in Computer Science.

[29]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[30]  Ana Sokolova,et al.  Information Hiding in Probabilistic Concurrent Systems , 2010, 2010 Seventh International Conference on the Quantitative Evaluation of Systems.

[31]  Marta Z. Kwiatkowska,et al.  A Testing Equivalence for Reactive Probabilistic Processes , 1998, EXPRESS.

[32]  Jos C. M. Baeten,et al.  Process Algebra: Equational Theories of Communicating Processes , 2009 .

[33]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[34]  Ling Cheung,et al.  A testing scenario for probabilistic processes , 2007, JACM.

[35]  Carroll Morgan,et al.  Characterising Testing Preorders for Finite Probabilistic Processes , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[36]  Pedro R. D'Argenio,et al.  Time-Bounded Reachability in Distributed Input/Output Interactive Probabilistic Chains , 2010, SPIN.

[37]  Scott A. Smolka,et al.  Composition and Behaviors of Probabilistic I/O Automata , 1994, Theor. Comput. Sci..

[38]  Rocco De Nicola,et al.  Extensional equivalences for transition systems , 1987, Acta Informatica.

[39]  David de Frutos-Escrig,et al.  A Sound and Complete Proof System for Probabilistic Processes , 1997, ARTS.

[40]  Sonja Georgievska,et al.  Retaining the Probabilities in Probabilistic Testing Theory , 2010, FoSSaCS.

[41]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[42]  Marta Z. Kwiatkowska,et al.  A Fully Abstract Metric-Space Denotational Semantics for Reactive Probabilistic Processes , 1997, COMPROX.

[43]  Manuel Núñez,et al.  Specification, testing and implementation relations for symbolic-probabilistic systems , 2006, Theor. Comput. Sci..

[44]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[45]  U. Rieder,et al.  Markov Decision Processes , 2010 .

[46]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[47]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[48]  Thomas A. Henzinger,et al.  Equivalence of Labeled Markov Chains , 2008, Int. J. Found. Comput. Sci..

[49]  Sonja Georgievska,et al.  Composing Systems While Preserving Probabilities , 2010, EPEW.

[50]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[51]  Mieke Massink,et al.  Basic Observables for Probabilistic May Testing , 2007, Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007).

[52]  Annabelle McIver,et al.  Abstraction, Refinement And Proof For Probabilistic Systems (Monographs in Computer Science) , 2004 .

[53]  Sonja Georgievska,et al.  Testing Reactive Probabilistic Processes , 2010, QAPL.

[54]  J. Doob Stochastic processes , 1953 .

[55]  Carroll Morgan,et al.  Testing finitary probabilistic processes (extended abstract) , 2009 .

[56]  Wang Yi,et al.  Testing preorders for probabilistic processes can be characterized by simulations , 2002, Theor. Comput. Sci..

[57]  David Lindley,et al.  Introduction to Probability and Statistics from a Bayesian Viewpoint , 1966 .

[58]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[59]  Jan A. Bergstra,et al.  Ready-Trace Semantics for Concrete Process Algebra with the Priority Operator , 1987, Comput. J..

[60]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[61]  R. V. Glabbeek The Linear Time-Branching Time Spectrum I The Semantics of Concrete , Sequential ProcessesR , 2007 .

[62]  C. A. R. Hoare,et al.  Communicating Sequential Processes (Reprint) , 1983, Commun. ACM.