Holevo's bound from a general quantum fluctuation theorem

The authors thank Jacob Taylor and Eric Lutz for interesting discussions. SD acknowledges financial support by a fellowship within the postdoc-program of the German Academic Exchange Service (DAAD, contract No D/11/40955). DK acknowledges financial support by a fellowship from the Joint Quantum Institute.

[1]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[2]  Schumacher,et al.  Limitation on the amount of accessible information in a quantum channel. , 1996, Physical review letters.

[3]  E. Hinds,et al.  Improved measurement of the shape of the electron , 2011, Nature.

[4]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[5]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.

[6]  Vlatko Vedral,et al.  An information–theoretic equality implying the Jarzynski relation , 2012, 1204.6168.

[7]  Daniel K Wójcik,et al.  Classical and quantum fluctuation theorems for heat exchange. , 2004, Physical review letters.

[8]  Dénes Petz,et al.  A variational expression for the relative entropy , 1988 .

[9]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[10]  C. Thompson Inequality with Applications in Statistical Mechanics , 1965 .

[11]  Massimiliano Esposito,et al.  Second law and Landauer principle far from equilibrium , 2011, 1104.5165.

[12]  R. Feynman Simulating physics with computers , 1999 .

[13]  P. Talkner,et al.  Colloquium: Quantum fluctuation relations: Foundations and applications , 2010, 1012.2268.

[14]  Caves,et al.  Ensemble-dependent bounds for accessible information in quantum mechanics. , 1994, Physical review letters.

[15]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[16]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[17]  Efficient measurements, purification, and bounds on the mutual information , 2003, quant-ph/0306039.

[18]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[19]  Yuen,et al.  Ultimate information carrying limit of quantum systems. , 1993, Physical review letters.

[20]  Mary Beth Ruskai,et al.  Inequalities for traces on von Neumann algebras , 1972 .

[21]  Andrey B. Matsko,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2001 .

[22]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[23]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[24]  J. Parrondo,et al.  Dissipation: the phase-space perspective. , 2007, Physical review letters.

[25]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[26]  P. Hänggi,et al.  Fluctuation theorems: work is not an observable. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  C. Jarzynskia Nonequilibrium work relations: foundations and applications , 2008 .

[28]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[29]  E. Lutz,et al.  Nonequilibrium entropy production for open quantum systems. , 2011, Physical review letters.

[30]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[31]  Kurt Jacobs A bound on the mutual information, and properties of entropy reduction, for quantum channels with inefficient measurements , 2006 .

[32]  S. Golden LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .

[33]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  Masahito Ueda,et al.  Nonequilibrium thermodynamics of feedback control. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Michael J. W. Hall,et al.  Realistic performance of the maximum information channel , 1993 .

[36]  P. Hänggi,et al.  Fluctuation theorems in driven open quantum systems , 2008, 0811.0973.

[37]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[38]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[39]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[40]  Hal Tasaki,et al.  Quantum Jarzynski-Sagawa-Ueda Relations , 2010, 1012.2753.

[41]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[42]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[43]  Peter Hänggi,et al.  Influence of measurements on the statistics of work performed on a quantum system. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[45]  C. Monroe,et al.  Quantum information processing with atoms and photons , 2002, Nature.

[46]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.