Velocity and displacement correlation functions for fractional generalized Langevin equations

We study analytically a generalized fractional Langevin equation. General formulas for calculation of variances and the mean square displacement are derived. Cases with a three parameter Mittag-Leffler frictional memory kernel are considered. Exact results in terms of the Mittag-Leffler type functions for the relaxation functions, average velocity and average particle displacement are obtained. The mean square displacement and variances are investigated analytically. Asymptotic behaviors of the particle in the short and long time limit are found. The model considered in this paper may be used for modeling anomalous diffusive processes in complex media including phenomena similar to single file diffusion or possible generalizations thereof. We show the importance of the initial conditions on the anomalous diffusive behavior of the particle.

[1]  R. Marcus,et al.  Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. , 2005, Physical review letters.

[2]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[3]  S. C. Lim,et al.  Fractional Langevin equations of distributed order. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  R. Metzler,et al.  Random time-scale invariant diffusion and transport coefficients. , 2008, Physical review letters.

[5]  J. Klafter,et al.  When translocation dynamics becomes anomalous. , 2003, Biophysical journal.

[6]  Trifce Sandev,et al.  Generalized Langevin equation with a three parameter Mittag-Leffler noise , 2011 .

[7]  E. C. Oliveira,et al.  On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator , 2009 .

[8]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[9]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[10]  Francesco Mainardi,et al.  Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics , 2012, 1201.0863.

[11]  J. Weber,et al.  Fluctuation Dissipation Theorem , 1956 .

[12]  M. Despósito,et al.  Anomalous diffusion induced by a Mittag-Leffler correlated noise. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  M. Tokuyama,et al.  Nonequilibrium statistical description of anomalous diffusion , 1999 .

[14]  Megumi Saigo,et al.  Certain Properties of Fractional Calculus Operators Associated with Generalized Mittag-Leffler Function , 2005 .

[15]  E. Lutz Fractional Langevin equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  F. Mainardi,et al.  Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics , 2011, 1106.1761.

[17]  Ralf Metzler,et al.  Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  S. C. Lim,et al.  Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation , 2009, 0905.0303.

[19]  Metzler,et al.  Generalized chapman-kolmogorov equation: A unifying approach to the description of anomalous transport in external fields , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Rudolf Hilfer,et al.  On fractional diffusion and continuous time random walks , 2003 .

[21]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[22]  N. Pottier Aging properties of an anomalously diffusing particule , 2002, cond-mat/0205307.

[23]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[24]  Kwok Sau Fa,et al.  Generalized Langevin equation with fractional derivative and long-time correlation function. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Mehdi Dalir,et al.  Applications of Fractional Calculus , 2010 .

[26]  J. Theriot,et al.  Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. , 2010, Physical review letters.

[27]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[28]  M. Despósito,et al.  Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. Bao,et al.  Harmonic velocity noise: non-Markovian features of noise-driven systems at long times. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  C. Jacobs-Wagner,et al.  Physical Nature of the Bacterial Cytoplasm , 2014 .

[31]  R. Metzler,et al.  In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. , 2010, Physical review letters.

[32]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[33]  Francesco Mainardi,et al.  The Fractional Langevin Equation: Brownian Motion Revisited , 2008, 0806.1010.

[34]  E. Capelas de Oliveira,et al.  Solution of the fractional Langevin equation and the Mittag–Leffler functions , 2009 .

[35]  E. Barkai,et al.  Ergodic properties of fractional Brownian-Langevin motion. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Trifce Sandev,et al.  Generalized space–time fractional diffusion equation with composite fractional time derivative , 2012 .

[37]  Kwok Sau Fa,et al.  Continuous-time random walk: exact solutions for the probability density function and first two moments , 2011 .

[38]  I. Sokolov,et al.  Kramers-like escape driven by fractional Gaussian noise. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Despósito,et al.  Anomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S. C. Lim,et al.  Accelerating and retarding anomalous diffusion , 2012, 1201.3024.

[41]  S. C. Lim,et al.  Fractional generalized Langevin equation approach to single-file diffusion , 2009, 0910.4734.

[42]  Karina Weron,et al.  Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements , 2012, Comput. Phys. Commun..

[43]  Riccardo Mannella,et al.  A Dynamical Approach to Fractional Brownian Motion , 1993, chao-dyn/9308004.

[44]  Ralf Metzler,et al.  Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. , 2010, Physical chemistry chemical physics : PCCP.

[45]  X. Xie,et al.  Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. , 2004, Physical review letters.

[46]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[47]  R. Metzler,et al.  Aging and nonergodicity beyond the Khinchin theorem , 2010, Proceedings of the National Academy of Sciences.

[48]  Fractional Brownian motion approach to polymer translocation: the governing equation of motion. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  M. Despósito,et al.  Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Trifce Sandev,et al.  Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise , 2010 .

[51]  H. M. Srivastava,et al.  Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions , 2010 .

[52]  Hari M. Srivastava,et al.  Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel , 2009, Appl. Math. Comput..

[53]  Francesco Mainardi,et al.  Simply and multiply scaled diffusion limits for continuous time random walks , 2005 .

[54]  Ralf Metzler,et al.  Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative , 2011, Journal of Physics A: Mathematical and Theoretical.

[55]  E. Barkai,et al.  Fractional Langevin equation: overdamped, underdamped, and critical behaviors. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  I. Goychuk Viscoelastic subdiffusion: from anomalous to normal. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.