Signal processing for experimental modal analysis

This paper is an overview of signal processing for modal analysis. The approach taken is to summarize some of the types of data that arise in modal analysis, to classify signal processing problems and to attempt to show the relevance of the latter to the former. It is intended to emphasize the diversity of approaches that may be applied and point to advanced methods that offer potential.

[1]  Robert J. Bernhard,et al.  A technique to determine the number of incoherent sources contributing to the response of a system , 1994 .

[2]  Richard L. Weaver,et al.  On crack identification and characterization in a beam by non-linear vibration analysis , 1995 .

[3]  Etienne Balmes,et al.  New Results on the Identification of Normal Modes from Experimental Complex Modes , 1994 .

[4]  Simon J. Godsill,et al.  The restoration of degraded audio signals , 1993 .

[5]  Geoffrey R. Tomlinson,et al.  Use of the Hilbert transform in modal analysis of linear and non-linear structures , 1984 .

[6]  IDENTIFICATION OF PHYSICAL PARAMETERS USING AN INSTRUMENTAL VARIABLES TECHNIQUE , 1997 .

[7]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[8]  H. G. Natke PROBLEMS OF MODEL UPDATING PROCEDURES: A PERSPECTIVE RESUMPTION , 1998 .

[9]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[10]  H. Saunders,et al.  Mechanical Signature Analysis—Theory and Applications , 1988 .

[11]  Paul R. White,et al.  THE ANALYSIS OF NON-STATIONARY SIGNALS USING TIME-FREQUENCY METHODS , 1996 .

[12]  Boualem Boashash,et al.  Time-Frequency Signal Analysis: Methods and Applications. , 1993 .

[13]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[15]  W. Fladung,et al.  APPLICATION AND CORRECTION OF THE EXPONENTIAL WINDOW FOR FREQUENCY RESPONSE FUNCTIONS , 1997 .

[16]  R. Weaver,et al.  On crack identification and characterization in a beam by nonlinear vibration analysis , 1994 .

[17]  Christophe Pierre,et al.  Modal analysis-based reduced-order models for nonlinear structures : An invariant manifold approach , 1999 .

[18]  W. B. Collis,et al.  Analysis of the TLS frequency response function estimator , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).

[19]  J. C. Hardin,et al.  Correlation autoregressive processes with application to helicopter noise , 1990 .

[20]  R. White,et al.  The effects of large vibration amplitudes on the fundamental mode shape of a clamped-clamped uniform beam , 1984 .

[21]  R. Langley,et al.  A hybrid method for the vibration analysis of complex structural-acoustic systems , 1999 .

[22]  P.O.A.L. Davies,et al.  The use of signal envelopes to describe the bandlimited response of a class of systems and to define an alternative shock spectrum , 1986 .

[23]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[24]  Kwang-Joon Kim,et al.  Determination of priority among correlated inputs in source identification problems , 1992 .

[25]  P. White,et al.  HIGHER-ORDER SPECTRA: THE BISPECTRUM AND TRISPECTRUM , 1998 .

[26]  A. Sestieri,et al.  Analysis Of Errors And Approximations In The Use Of Modal Co-Ordinates , 1994 .

[27]  L. Lathauwer,et al.  From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .

[28]  S. R. Ibrahim Random Decrement Technique for Modal Identification of Structures , 1977 .

[29]  K. Shin,et al.  FORCE-STATE MAPPING METHOD OF A CHAOTIC DYNAMICAL SYSTEM , 1998 .

[30]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[31]  T. Rao,et al.  An Introduction to Bispectral Analysis and Bilinear Time Series Models , 1984 .

[32]  Robert D. Adams,et al.  The location of defects in structures from measurements of natural frequencies , 1979 .

[33]  P. R. White,et al.  Simulation and Identification of Nonstationary Systems Using Linear Time-Frequency Methods , 1998 .

[34]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[35]  Alexander F. Vakakis,et al.  NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW , 1997 .

[36]  An-Chen Lee,et al.  SENSOR AND ACTUATOR PLACEMENT FOR MODAL IDENTIFICATION , 1998 .

[37]  D. Guinea,et al.  An empirical multi-sensor estimation of tool wear , 1993 .

[38]  R. Benjamin Signal-space, the key to signal processing , 1983 .

[39]  A model-based method for ranking measured channels , 1992 .