Approche hybride pour une mobilisation automatique de ressources hétérogènes distribuées. Application en eSanté (C)

Advanced information systems increasingly use diverse domain-specific resources like services, data sources, devices, etc. One of the today’s pervasive environment challenges is to automate the mobilization of heterogeneous and distributed resources, taking into account the continuously changing conditions of the resources required by the users’ tasks. In this paper, we propose a hybrid architecture model based on ontological models and object oriented components to empower the resources mobilization automation. We also provide an application example from the eHealth domain to demonstrate how the proposed approach can support the access to the required medical resources according to the users’ tasks specifications and to the discovered resources conditions in terms of availability, accessibility, and capability. MOTS-CLES : Systemes Pervasifs, Sensibilisation au Contexte, Modelisation des connaissances, Ontologie, Raisonnement a base de regles, eSante.

[1]  Jintao Li,et al.  A User-centric Task Computing Architecture for Pervasive Computing , 2008, 2008 Third International Conference on Pervasive Computing and Applications.

[2]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[3]  Matjaz B. Juric,et al.  Service-Oriented Framework for Human Task Support and Automation , 2008, IEEE Transactions on Industrial Informatics.

[4]  Ebrahim Nageba,et al.  Personalizable architecture model for optimizing the access to pervasive ressources and services : Application in telemedicine. (Modèle d'architecture personnalisable pour l'optimisation de l'accès à des ressources et services pervasifs : Application à la télémédecine) , 2011 .

[5]  Jakob E. Bardram,et al.  Activity-based computing: support for mobility and collaboration in ubiquitous computing , 2005, Personal and Ubiquitous Computing.

[6]  Franck Morvan,et al.  Data Privacy Preservation in Telemedicine: The PAIRSE Project , 2011, MIE.

[7]  Lampros K. Stergioulas,et al.  Web-Services-Based Resource Discovery Model and Service Deployment on HealthGrids , 2010, IEEE Transactions on Information Technology in Biomedicine.

[8]  Seema Bawa,et al.  Comparative Analysis of Resource Discovery Approaches in Grid Computing , 2008, J. Comput..

[9]  Giuseppe Di Modica,et al.  Resource and service discovery in SOAs: A P2P oriented semantic approach , 2011, Int. J. Appl. Math. Comput. Sci..

[10]  Jiming Liu World Wide Wisdom Web (W4) and Autonomy Oriented Computing (AOC): What, When, and How? , 2005, PReMI.

[11]  Marlon Dumas,et al.  Décentralisation Optimisée de Services Web Composés , 2011, INFORSID.

[12]  Jiangbo Dang,et al.  An ontological knowledge framework for adaptive medical workflow , 2008, J. Biomed. Informatics.

[13]  B. Senthil Murugan,et al.  A Survey of Resource Discovery Approaches in Distributed Computing Environment , 2011 .

[14]  Fu-Shiung Hsieh Context-aware Workflow Driven Resource Allocation for e-Healthcare , 2007, 2007 9th International Conference on e-Health Networking, Application and Services.

[15]  Khaled Shaalan,et al.  Context-aware knowledge modelling for decision support in e-health , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).