Improved Separations between Nondeterministic and Randomized Multiparty Communication

We exhibit an explicit function <i>f</i> : {0, 1}<sup>n</sup> →{0, 1} that can be computed by a nondeterministic number-on-forehead protocol communicating <i>O</i>(log<i>n</i>) bits, but that requires <i>n</i><sup>Ω(1)</sup> bits of communication for randomized number-on-forehead protocols with <i>k</i> = <i>Δ</i>·log<i>n</i> players, for any fixed <i>Δ</i> < 1. Recent breakthrough results for the Set-Disjointness function [Lee and Shraibman 2008; Chattopadhyay and Ada 2008] based on the work of Sherstov [2009; 2008a] imply such a separation but only when the number of players is <i>k</i> < loglog<i>n</i>. We also show that for any <i>k</i> = <i>A</i> ·loglog<i>n</i> the above function <i>f</i> is computable by a small circuit whose depth is constant whenever <i>A</i> is a (possibly large) constant. Recent results again give such functions but only when the number of players is <i>k</i> < loglog<i>n</i>.

[1]  Toniann Pitassi,et al.  Separating Deterministic from Nondeterministic NOF Multiparty Communication Complexity , 2007, ICALP.

[2]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[3]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[4]  Alexander A. Razborov,et al.  n^Omega(log n) Lower Bounds on the Size of Depth-3 Threshold Circuits with AND Gates at the Bottom , 1993, Information Processing Letters.

[5]  Paul Beame,et al.  Multiparty Communication Complexity of AC^0 , 2008, Electron. Colloquium Comput. Complex..

[6]  Emanuele Viola,et al.  Fooling Parity Tests with Parity Gates , 2004, APPROX-RANDOM.

[7]  Arkadev Chattopadhyay Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[8]  Oded Goldreich,et al.  On the power of two-point based sampling , 1989, J. Complex..

[9]  A. Razborov Communication Complexity , 2011 .

[10]  Ravi B. Boppana,et al.  The Average Sensitivity of Bounded-Depth Circuits , 1997, Inf. Process. Lett..

[11]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[12]  Toniann Pitassi,et al.  Lower bounds for Lov´ asz-Schrijver systems and beyond, using multiparty communication complexity , 2005 .

[13]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[14]  Peter Frankl,et al.  Complexity classes in communication complexity theory (preliminary version) , 1986, IEEE Annual Symposium on Foundations of Computer Science.

[15]  Arkadev Chattopadhyay,et al.  Multiparty Communication Complexity of Disjointness , 2008, Electron. Colloquium Comput. Complex..

[16]  Alexander A. Sherstov The pattern matrix method for lower bounds on quantum communication , 2008, STOC '08.

[17]  Troy Lee,et al.  Disjointness Is Hard in the Multi-party Number-on-the-Forehead Model , 2008, Computational Complexity Conference.

[18]  Johan Håstad,et al.  On the power of small-depth threshold circuits , 1991, computational complexity.

[19]  Paul Beame,et al.  MULTIPARTY COMMUNICATION COMPLEXITY AND THRESHOLD CIRCUIT SIZE OF AC0∗ , 2010 .

[20]  Moni Naor,et al.  Small-bias probability spaces: efficient constructions and applications , 1990, STOC '90.

[21]  Fan Chung Graham,et al.  Communication Complexity and Quasi Randomness , 1993, SIAM J. Discret. Math..

[22]  Toniann Pitassi,et al.  Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity , 2005, ICALP.

[23]  Avi Wigdersony N (log N) Lower Bounds on the Size of Depth 3 Threshold Circuits with and Gates at the Bottom , 1993 .

[24]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[25]  A. Chattopadhyay Discrepancy and the Power of Bottom Fan-in in Depth-three Circuits , 2007, FOCS 2007.

[26]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[27]  Noam Nisan,et al.  The computational complexity of universal hashing , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[28]  Noam Nisan,et al.  The computational complexity of universal hashing , 1990, STOC '90.

[29]  Ran Raz,et al.  The BNS-Chung criterion for multi-party communication complexity , 2000, computational complexity.

[30]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[31]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[32]  Jeff Ford,et al.  Hadamard Tensors and Lower Bounds on Multiparty Communication Complexity , 2005, ICALP.

[33]  Emanuele Viola,et al.  Constant-Depth Circuits for Arithmetic in Finite Fields of Characteristic Two , 2006, STACS.

[34]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[35]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[36]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for GF(2) Polynomials and Multiparty Protocols , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[37]  Alexander A. Sherstov Separating AC0 from depth-2 majority circuits , 2007, STOC '07.

[38]  Troy Lee,et al.  Disjointness is Hard in the Multiparty Number-on-the-Forehead Model , 2007, 2008 23rd Annual IEEE Conference on Computational Complexity.

[39]  Alexander A. Sherstov Communication Lower Bounds Using Dual Polynomials , 2008, Bull. EATCS.

[40]  Ramamohan Paturi,et al.  On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.

[41]  Noam Nisan,et al.  Rounds in communication complexity revisited , 1991, STOC '91.

[42]  Toniann Pitassi,et al.  Lower Bounds for Lov[a-acute]sz--Schrijver Systems and Beyond Follow from Multiparty Communication Complexity , 2007, SIAM J. Comput..

[43]  Alexander A. Sherstov SeparatingAC0 from Depth-2 Majority Circuits , 2009, SIAM J. Comput..

[44]  Emanuele Viola,et al.  Norms, XOR Lemmas, and Lower Bounds for Polynomials and Protocols , 2008, Theory Comput..