Monotonicity of primal–dual interior-point algorithms for semidefinite programming problems

We present primal–dual interior-point algorithms with polynomial iteration bounds to find approximate solutions of semidefinite programming problems. Our algorithms achieve the current best iteration bounds and, in every iteration of our algorithms, primal and dual objective values are strictly improved.

[1]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[2]  Robert M. Freund,et al.  A Method for the Parametric Center Problem, with a Strictly Monotone Polynomial-Time Algorithm for Linear Programming , 1991, Math. Oper. Res..

[3]  K. Anstreicher On monotonicity in the scaled potential algorithm for linear programming , 1991 .

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[6]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[7]  Shinji Mizuno,et al.  Strict monotonicity in Todd's low-complexity algorithm for linear programming , 1992, Oper. Res. Lett..

[8]  Michael J. Todd A Low Complexity Interior-Point Algorithm for Linear Programming , 1992, SIAM J. Optim..

[9]  Arkadi Nemirovski,et al.  Potential Reduction Polynomial Time Method for Truss Topology Design , 1994, SIAM J. Optim..

[10]  Shinji Mizuno,et al.  Monotonicity of Primal and Dual Objective Values in Primal-dual Interior-point Algorithms , 1994, SIAM J. Optim..

[11]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[12]  Shuzhong Zhang,et al.  Symmetric primal-dual path-following algorithms for semidefinite programming , 1999 .

[13]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[14]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[15]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[16]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[17]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[18]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[19]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[20]  Renato D. C. Monteiro,et al.  Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..

[21]  Etienne de Klerk,et al.  Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming , 1998, J. Comb. Optim..

[22]  Shuzhong Zhang,et al.  On the long-step path-following method for semidefinite programming , 1998, Oper. Res. Lett..

[23]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[24]  S. Benson,et al.  Mixed linear and semidefinite programming for combinatorial and quadratic optimization , 1999 .

[25]  Masakazu Kojima,et al.  Search directions in the SDP and the monotone SDLCP: generalization and inexact computation , 1999, Math. Program..