A fast, rigorous technique for computing the regulator of a real quadratic field

We present a new algorithm for computing the regulator of a real quadratic field Q(√D), based on an algorithm for unconditionally verifying the correctness of the regulator produced by a subexponential algorithm, that runs in expected time O(D 1/6+e ) under the Generalized Riemann Hypothesis. The correctness of our algorithm relies on no unproven hypotheses and is currently the fastest known unconditional algorithm for computing the regulator. A number of implementation issues and performance enhancements are discussed, and we present the results of computations demonstrating the efficiency of the new algorithm.

[1]  Alfred J. van der Poorten,et al.  Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000 , 1999 .

[2]  Richard Mollin,et al.  Number theory and applications , 1989 .

[3]  Harvey A. Cohen,et al.  Calculs de nombres de classes et de régulateurs de corps quadratiques en temps sous-exponentiel , 1993 .

[4]  Michael J. Jacobson The Efficiency and Security of a Real Quadratic Field Based-Key Exchange Protocol , 2001 .

[5]  Michael J. Jacobson,et al.  Solving the Pell Equation , 2008 .

[6]  K. McCurley,et al.  A rigorous subexponential algorithm for computation of class groups , 1989 .

[7]  Ulrich Vollmer,et al.  An Accelerated Buchmann Algorithm for Regulator Computation in Real Quadratic Fields , 2002, ANTS.

[8]  Marvin C. Wunderlich,et al.  On the parallel generation of the residues for the continued fraction factoring algorithm , 1987 .

[9]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[10]  Michael J. Jacobson,et al.  An Improved Real-Quadratic-Field-Based Key Exchange Procedure , 2005, Journal of Cryptology.

[11]  Michael J. Jacobson,et al.  A computational approach for solving y2 =1k + 2k + ... + xk , 2003, Math. Comput..

[12]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[13]  Johannes Buchmann,et al.  LiDIA : a library for computational number theory , 1995 .

[14]  Arjen K. Lenstra,et al.  Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[15]  Michael J. Jacobson,et al.  Computational techniques in quadratic fields , 1995 .

[16]  J. Buchmann A subexponential algorithm for the determination of class groups and regulators of algebraic number fields , 1990 .

[17]  Henri Cohen,et al.  Heuristics on class groups , 1984 .

[18]  M. Maurer,et al.  Regulator approximation and fundamental unit computation for real-quadratic orders , 2000 .

[19]  J. K. Lenstra,et al.  Solving the Pell equation , 2002 .

[20]  H. Lenstra On the calculation of regulators and class numbers of quadratic fields , 1982 .

[21]  Christine Abel,et al.  Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen , 1994 .

[22]  P. Levy,et al.  Sur le développement en fraction continue d'un nombre choisi au hasard , 1936 .

[23]  Michael J. Jacobson,et al.  The Size of the Fundamental Solutions of Consecutive Pell Equations , 2000, Exp. Math..

[24]  H. C. Williams,et al.  Short Representation of Quadratic Integers , 1995 .

[25]  Stéphane R. Louboutin Explicit upper bounds for |L(1,χ)| for primitive even Dirichlet characters , 2002 .

[26]  H. C. Williams,et al.  A numerical investigation into the length of the period of the continued fraction expansion of , 1981 .

[27]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[28]  Henri Cohen,et al.  Subexponential Algorithms for Class Group and Unit Computations , 1997, J. Symb. Comput..

[29]  Michael J. Jacobson,et al.  An Investigation of Bounds for the Regulator of Quadratic Fields , 1995, Exp. Math..