A fast, rigorous technique for computing the regulator of a real quadratic field
暂无分享,去创建一个
[1] Alfred J. van der Poorten,et al. Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000 , 1999 .
[2] Richard Mollin,et al. Number theory and applications , 1989 .
[3] Harvey A. Cohen,et al. Calculs de nombres de classes et de régulateurs de corps quadratiques en temps sous-exponentiel , 1993 .
[4] Michael J. Jacobson. The Efficiency and Security of a Real Quadratic Field Based-Key Exchange Protocol , 2001 .
[5] Michael J. Jacobson,et al. Solving the Pell Equation , 2008 .
[6] K. McCurley,et al. A rigorous subexponential algorithm for computation of class groups , 1989 .
[7] Ulrich Vollmer,et al. An Accelerated Buchmann Algorithm for Regulator Computation in Real Quadratic Fields , 2002, ANTS.
[8] Marvin C. Wunderlich,et al. On the parallel generation of the residues for the continued fraction factoring algorithm , 1987 .
[9] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[10] Michael J. Jacobson,et al. An Improved Real-Quadratic-Field-Based Key Exchange Procedure , 2005, Journal of Cryptology.
[11] Michael J. Jacobson,et al. A computational approach for solving y2 =1k + 2k + ... + xk , 2003, Math. Comput..
[12] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[13] Johannes Buchmann,et al. LiDIA : a library for computational number theory , 1995 .
[14] Arjen K. Lenstra,et al. Algorithms in Number Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[15] Michael J. Jacobson,et al. Computational techniques in quadratic fields , 1995 .
[16] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields , 1990 .
[17] Henri Cohen,et al. Heuristics on class groups , 1984 .
[18] M. Maurer,et al. Regulator approximation and fundamental unit computation for real-quadratic orders , 2000 .
[19] J. K. Lenstra,et al. Solving the Pell equation , 2002 .
[20] H. Lenstra. On the calculation of regulators and class numbers of quadratic fields , 1982 .
[21] Christine Abel,et al. Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen , 1994 .
[22] P. Levy,et al. Sur le développement en fraction continue d'un nombre choisi au hasard , 1936 .
[23] Michael J. Jacobson,et al. The Size of the Fundamental Solutions of Consecutive Pell Equations , 2000, Exp. Math..
[24] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .
[25] Stéphane R. Louboutin. Explicit upper bounds for |L(1,χ)| for primitive even Dirichlet characters , 2002 .
[26] H. C. Williams,et al. A numerical investigation into the length of the period of the continued fraction expansion of , 1981 .
[27] Jeffrey Shallit,et al. Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.
[28] Henri Cohen,et al. Subexponential Algorithms for Class Group and Unit Computations , 1997, J. Symb. Comput..
[29] Michael J. Jacobson,et al. An Investigation of Bounds for the Regulator of Quadratic Fields , 1995, Exp. Math..