Membrane Core-Specific Antimicrobial Action of Cathelicidin LL-37 Peptide Switches Between Pore and Nanofibre Formation

[1]  Kyle A. Beauchamp,et al.  gromacs: local virial implementation of PME electrostatics , 2016 .

[2]  Marta Enciso,et al.  Controls and constrains of the membrane disrupting action of Aurein 1.2 , 2015, Scientific Reports.

[3]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[4]  A. Mechler,et al.  Viscoelastic changes measured in partially suspended single bilayer membranes. , 2015, Soft matter.

[5]  A. Tossi,et al.  New aspects of the structure and mode of action of the human cathelicidin LL-37 revealed by the intrinsic probe p-cyanophenylalanine. , 2015, The Biochemical journal.

[6]  Lisandra L. Martin,et al.  Subtle differences in initial membrane interactions underpin the selectivity of small antimicrobial peptides , 2015 .

[7]  Guangshun Wang,et al.  High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. , 2014, Biochimica et biophysica acta.

[8]  M. Aguilar,et al.  Real-time Measurement of Membrane Conformational States Induced by Antimicrobial Peptides: Balance Between Recovery and Lysis , 2014, Scientific Reports.

[9]  Marilyn A. Anderson,et al.  Phosphoinositide-mediated oligomerization of a defensin induces cell lysis , 2014, eLife.

[10]  J. Weisshaar,et al.  Real-time attack of LL-37 on single Bacillus subtilis cells. , 2013, Biochimica et biophysica acta.

[11]  M. Aguilar,et al.  Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. , 2013, Biophysical journal.

[12]  Liliane Schoofs,et al.  A comprehensive summary of LL-37, the factotum human cathelicidin peptide. , 2012, Cellular immunology.

[13]  R. Epand,et al.  Membrane-active peptides and the clustering of anionic lipids. , 2012, Biophysical journal.

[14]  P. Janmey,et al.  Cathelicidin LL-37 Increases Lung Epithelial Cell Stiffness, Decreases Transepithelial Permeability, and Prevents Epithelial Invasion by Pseudomonas aeruginosa , 2011, The Journal of Immunology.

[15]  Yen Sun,et al.  Transmembrane pores formed by human antimicrobial peptide LL-37. , 2011, Biophysical journal.

[16]  R. Hoffmann,et al.  QCM-D fingerprinting of membrane-active peptides , 2011, European Biophysics Journal.

[17]  M. Aguilar,et al.  Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers. , 2009, Biomaterials.

[18]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  H. Amenitsch,et al.  Interaction of LL-37 with model membrane systems of different complexity: influence of the lipid matrix. , 2008, Biophysical journal.

[20]  K. Henzler-Wildman,et al.  NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. , 2008, Biochemistry.

[21]  P. Kinnunen,et al.  Binding of LL-37 to model biomembranes: insight into target vs host cell recognition. , 2008, Biochimica et biophysica acta.

[22]  M. Perugini,et al.  Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways. , 2008, Journal of molecular biology.

[23]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[24]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[25]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[26]  M. Aguilar,et al.  A Study of Protein Electrochemistry on a Supported Membrane Electrode , 2006, International Journal of Peptide Research and Therapeutics.

[27]  Guangshun Wang,et al.  Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. , 2006, Journal of the American Chemical Society.

[28]  Y. Ishitsuka,et al.  Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. , 2006, Biophysical journal.

[29]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[30]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[31]  Michael F. Brown,et al.  Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. , 2004, Biochemistry.

[32]  P. McCray,et al.  Human β-Defensins 2 and 3 Demonstrate Strain-Selective Activity against Oral Microorganisms , 2004, Journal of Clinical Microbiology.

[33]  M. Zanetti Cathelicidins, multifunctional peptides of the innate immunity , 2004, Journal of leukocyte biology.

[34]  E. Isogai,et al.  Sensitivity of genera Porphyromonas and Prevotella to the bactericidal action of C-terminal domain of human CAP18 and its analogues. , 2003, Oral microbiology and immunology.

[35]  Dong-Kuk Lee,et al.  Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. , 2003, Biochemistry.

[36]  W. Thomas,et al.  Surface plasmon resonance spectroscopy in the study of membrane‐mediated cell signalling , 2003, Journal of peptide science : an official publication of the European Peptide Society.

[37]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[38]  Y. Shai,et al.  Mode of action of membrane active antimicrobial peptides. , 2002, Biopolymers.

[39]  Takaaki Ohtake,et al.  Innate antimicrobial peptide protects the skin from invasive bacterial infection , 2001, Nature.

[40]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[41]  J. Calafat,et al.  Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. , 2001, Blood.

[42]  M. Perugini,et al.  Self-association of Human Apolipoprotein E3 and E4 in the Presence and Absence of Phospholipid* , 2000, The Journal of Biological Chemistry.

[43]  R. Lehrer,et al.  Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium. , 2000, Oral microbiology and immunology.

[44]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[45]  Y. Shai,et al.  Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. , 1999, The Biochemical journal.

[46]  T Darden,et al.  New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. , 1999, Structure.

[47]  Alan J. Waring,et al.  Activities of LL-37, a Cathelin-Associated Antimicrobial Peptide of Human Neutrophils , 1998, Antimicrobial Agents and Chemotherapy.

[48]  C. MacPhee,et al.  Trifluoroethanol induces the self‐association of specific amphipathic peptides , 1997, FEBS Letters.

[49]  B. Kasemo,et al.  Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. , 1997, Faraday discussions.

[50]  R. L. Baldwin,et al.  How Hofmeister ion interactions affect protein stability. , 1996, Biophysical journal.

[51]  R. McElhaney,et al.  Physical studies of cholesterol-phospholipid interactions , 1996 .

[52]  J. Larrick,et al.  Anti-microbial activity of human CAP18 peptides. , 1995, Immunotechnology : an international journal of immunological engineering.

[53]  A. Tonks Drug resistance is a worldwide threat, warns report , 1994 .

[54]  J. Larrick,et al.  Antimicrobial activity of rabbit CAP18-derived peptides , 1993, Antimicrobial Agents and Chemotherapy.

[55]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[56]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .