Evaluation of constraint in photovoltaic models by exploiting an enhanced ant lion optimizer

Abstract Parameter estimation of photovoltaic models is a critical step in the control and management of photovoltaic equipment. In this study, to estimate photovoltaic model parameters efficiently and accurately, an enhanced Ant Lion Optimizer is designed, which is on account of the opposition-based learning mechanism and the Nelder-Mead simplex technique. This optimizer has a mediocre performance and suffers from high uncertainty in finding global optima, immature convergence, and imbalanced exploration and exploitation inclinations. Hence, the opposition-based learning mechanism is used to ensure in-depth exploration and achieve a better balance between diversification and intensification. The Nelder-Mead simplex is adapted to enable a smooth transition from extensive exploration to intensified exploitation. The proposed methodology is utilized to determine the parameters of photovoltaic solar cells using three diode models (i.e., single diode, double diode, and photovoltaic module). Besides, the performance of the proposed approach is validated based on three practical manufacturers’ datasets. The extensive experimental results show that the enhanced optimizer can estimate the parameters efficiently. It significantly outperforms a variety of well-known algorithms as a potential tool for parameter estimation of photovoltaic models and shows promising capability. A public online service supports this research for any question and application of the proposed tool at http://aliasgharheidari.com .

[1]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[2]  Kusum Deep,et al.  Improved sine cosine algorithm with crossover scheme for global optimization , 2019, Knowl. Based Syst..

[3]  Bijay Ketan Panigrahi,et al.  Hydro-thermal-wind scheduling employing novel ant lion optimization technique with composite ranking index , 2016 .

[4]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[5]  Giancarlo Fortino,et al.  Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm , 2020, Comput. Networks.

[6]  J. Phillips,et al.  A comparative study of extraction methods for solar cell model parameters , 1986 .

[7]  Xuefeng Hu,et al.  An Integrated Step-Up Inverter Without Transformer and Leakage Current for Grid-Connected Photovoltaic System , 2019, IEEE Transactions on Power Electronics.

[8]  Xuehua Zhao,et al.  Exploratory differential ant lion-based optimization , 2020, Expert Syst. Appl..

[9]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[10]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[11]  Ying Fan,et al.  Does air pollution stimulate electric vehicle sales? Empirical evidence from twenty major cities in China , 2020 .

[12]  Minqiang Li,et al.  A hybrid niching PSO enhanced with recombination-replacement crowding strategy for multimodal function optimization , 2012, Appl. Soft Comput..

[13]  Aboul Ella Hassanien,et al.  Chaotic antlion algorithm for parameter optimization of support vector machine , 2018, Applied Intelligence.

[14]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[15]  Wei Wang,et al.  New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality , 2019, J. Frankl. Inst..

[16]  Aboul Ella Hassanien,et al.  Antlion Optimization Based Segmentation for MRI Liver Images , 2016, ICGEC.

[17]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[18]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[19]  Huiling Chen,et al.  Horizontal and vertical crossover of Harris hawk optimizer with Nelder-Mead simplex for parameter estimation of photovoltaic models , 2020 .

[20]  Ling Yu,et al.  A hybrid ant lion optimizer with improved Nelder–Mead algorithm for structural damage detection by improving weighted trace lasso regularization , 2020, Advances in Structural Engineering.

[21]  P. Hu,et al.  Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology , 2019, Energy.

[22]  Mingjing Wang,et al.  Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules , 2020 .

[23]  Kusum Deep,et al.  Opposition based Laplacian Ant Lion Optimizer , 2017, J. Comput. Sci..

[24]  Yi-Ming Wei,et al.  Erratum to: Hilbert Spectra and Empirical Mode Decomposition: A Multiscale Event Analysis Method to Detect the Impact of Economic Crises on the European Carbon Market , 2017, Computational Economics.

[25]  Enbin Liu,et al.  Formation Mechanism of Trailing Oil in Product Oil Pipeline , 2018, Processes.

[26]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[27]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[28]  Y. Shang,et al.  Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. , 2019, The Science of the total environment.

[29]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[30]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[31]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[32]  Q. Niu,et al.  A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells , 2014 .

[33]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[34]  Mohamed A. Awadallah,et al.  Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data , 2016 .

[35]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[36]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[37]  Almoataz Y. Abdelaziz,et al.  Ant Lion Optimization Algorithm for optimal location and sizing of renewable distributed generations , 2017 .

[38]  Cihan Karakuzu,et al.  A novel improved antlion optimizer algorithm and its comparative performance , 2018, Neural Computing and Applications.

[39]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[40]  Praveen Kumar Reddy Maddikunta,et al.  A hybrid cluster head selection model for Internet of Things , 2019, Clust. Comput..

[41]  R. P. Saini,et al.  Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints , 2017 .

[42]  Changcheng Huang,et al.  Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models , 2020 .

[43]  Ahmad Rezaee Jordehi,et al.  Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new optimisation algorithm for estimating parameters of PV cells and modules , 2016 .

[44]  A. R. Jordehi Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules , 2018 .

[45]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[46]  Jun Cheng,et al.  New results on stabilization analysis for fuzzy semi-Markov jump chaotic systems with state quantized sampled-data controller , 2020, Inf. Sci..

[47]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[48]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[49]  Xu Chen,et al.  A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module , 2019, Applied Energy.

[50]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[51]  Giancarlo Fortino,et al.  Environment-fusion multipath routing protocol for wireless sensor networks , 2020, Inf. Fusion.

[52]  N. Rajasekar,et al.  A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation , 2017 .

[53]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[54]  Xu Chen,et al.  An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models , 2019, Energy Conversion and Management.

[55]  Crina Grosan,et al.  Feature Selection via Chaotic Antlion Optimization , 2016, PloS one.

[56]  Ke Zhang,et al.  A comprehensive assessment framework for quantifying climatic and anthropogenic contributions to streamflow changes: A case study in a typical semi-arid North China basin , 2020, Environ. Model. Softw..

[57]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[58]  Huiling Chen,et al.  Slime mould algorithm: A new method for stochastic optimization , 2020, Future Gener. Comput. Syst..

[59]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[60]  Ashish K. Panchal,et al.  Extraction of solar cell parameters from a single current–voltage characteristic using teaching learning based optimization algorithm , 2014 .

[61]  Huiling Chen,et al.  A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems , 2020, Appl. Math. Comput..

[62]  Aboul Ella Hassanien,et al.  Binary ant lion approaches for feature selection , 2016, Neurocomputing.

[63]  Nan Jiang,et al.  A simple differential evolution with time-varying strategy for continuous optimization , 2020, Soft Comput..

[64]  Xuehua Zhao,et al.  Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts , 2020 .

[65]  Bai Yang,et al.  An adaptive differential evolution with combined strategy for global numerical optimization , 2020, Soft Comput..

[66]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[67]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[68]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .