Making DNA do a U-turn: IHF and related proteins.

IHF and HU belong to a family of proteins that introduce sharp bends into DNA and act as accessory factors in a variety of cellular processes in prokaryotes. In addition to the crystal structure of IHF bound to DNA, the past year has seen a number of advances in the understanding of the interactions of these proteins with DNA in solution.

[1]  E. Geiduschek,et al.  Localized DNA flexibility contributes to target site selection by DNA-bending proteins. , 1996, Journal of molecular biology.

[2]  M. Bianchi Prokaryotic HU and eukaryotic HMG1: a kinked relationship , 1994, Molecular microbiology.

[3]  I. Tanaka,et al.  A protein structural motif that bends DNA , 1989, Proteins.

[4]  F. Imamoto,et al.  Preferential binding of E.coli histone-like protein HUα to negatively supercoiled DNA , 1992 .

[5]  I. Tanaka,et al.  3-Å resolution structure of a protein with histone-like properties in prokaryotes , 1984, Nature.

[6]  D Roberts,et al.  Growth phase variation of integration host factor level in Escherichia coli , 1994, Journal of bacteriology.

[7]  E. Bonnefoy,et al.  DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. , 1994, Journal of molecular biology.

[8]  S. Goodman,et al.  Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Phoebe A Rice,et al.  Crystal Structure of an IHF-DNA Complex: A Protein-Induced DNA U-Turn , 1996, Cell.

[10]  P. van de Putte,et al.  Participation of the Flank Regions of the Integration Host Factor Protein in the Specificity and Stability of DNA Binding (*) , 1995, The Journal of Biological Chemistry.

[11]  H. Nash,et al.  Comparison of protein binding to DNA in vivo and in vitro: defining an effective intracellular target. , 1995, The EMBO journal.

[12]  K. Drlica,et al.  Histone-like protein HU and bacterial DNA topology: suppression of an HU deficiency by gyrase mutations. , 1996, Journal of molecular biology.

[13]  W. McClure,et al.  Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). , 1990, Nucleic acids research.

[14]  K. Drlica,et al.  Cross-talk between topoisomerase I and HU in Escherichia coli. , 1996, Journal of molecular biology.

[15]  A. Klug,et al.  The structure of an oligo(dA)·oligo(dT) tract and its biological implications , 1987, Nature.

[16]  Nora Goosen,et al.  The regulation of transcription initiation by integration host factor , 1995, Molecular microbiology.

[17]  H. Nash The HU and IHF Proteins: Accessory Factors for Complex Protein-DNA Assemblies , 1996 .

[18]  X. Jia,et al.  Structure of the Bacillus subtilis phage SPO1-encoded type II DNA-binding protein TF1 in solution. , 1996, Journal of molecular biology.

[19]  J. Oberto,et al.  Histones, HMG, HU, IHF: Même combat. , 1994, Biochimie.

[20]  J. Oberto,et al.  Serratia marcescens contains a heterodimeric HU protein like Escherichia coli and Salmonella typhimurium , 1996, Journal of bacteriology.

[21]  E. Bonnefoy,et al.  HU and IHF, two homologous histone‐like proteins of Escherichia coli, form different protein‐DNA complexes with short DNA fragments. , 1991, The EMBO journal.

[22]  E. Geiduschek,et al.  Determinants of affinity and mode of DNA binding at the carboxy terminus of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1 , 1994, Journal of bacteriology.

[23]  S. Nunes-Düby,et al.  Single base-pair precision and structural rigidity in a small IHF-induced DNA loop. , 1995, Journal of molecular biology.

[24]  A. Segall,et al.  Architectural elements in nucleoprotein complexes: interchangeability of specific and non‐specific DNA binding proteins. , 1994, The EMBO journal.

[25]  M. Yaniv,et al.  E. coli DNA binding protein HU forms nucleosome-like structure with circular double-stranded DNA , 1979, Cell.

[26]  R. Gumport,et al.  The specific binding of Escherichia coli integration host factor involves both major and minor grooves of DNA. , 1995, Biochemistry.

[27]  A. Oppenheim,et al.  Genetic and biochemical analysis of the integration host factor of Escherichia coli. , 1993, Journal of molecular biology.

[28]  V. de Lorenzo,et al.  Co-regulation by bent DNA. Functional substitutions of the integration host factor site at sigma 54-dependent promoter Pu of the upper-TOL operon by intrinsically curved sequences. , 1994, The Journal of biological chemistry.

[29]  H. Nash,et al.  The interaction of E. coli IHF protein with its specific binding sites , 1989, Cell.

[30]  Steven Hahn,et al.  Crystal structure of a yeast TBP/TATA-box complex , 1993, Nature.

[31]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[32]  T. Steitz,et al.  A DNA dodecamer containing an adenine tract crystallizes in a unique lattice and exhibits a new bend. , 1993, Journal of molecular biology.

[33]  J. Molina-López,et al.  Geometry of the process of transcription activation at the sigma 54-dependent nifH promoter of Klebsiella pneumoniae. , 1994, The Journal of biological chemistry.

[34]  R. Kaptein,et al.  Solution structure of the HU protein from Bacillus stearothermophilus. , 1995, Journal of molecular biology.

[35]  H. Nash,et al.  Characterization of a set of integration host factor mutants deficient for DNA binding. , 1993, Journal of Molecular Biology.

[36]  A. Rich,et al.  Asymmetric lateral distribution of unshielded phosphate groups in nucleosomal DNA and its role in DNA bending. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Geiduschek,et al.  DNA-bending properties of TF1. , 1991, Journal of molecular biology.

[38]  A. Gronenborn,et al.  Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex , 1995, Cell.

[39]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[40]  Kano Yasunobu,et al.  Chimeric HU-IHF proteins that alter DNA-binding ability. , 1992 .

[41]  R. C. Johnson,et al.  The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. , 1993, Genes & development.

[42]  E. Geiduschek,et al.  On the connection between inherent DNA flexure and preferred binding of hydroxymethyluracil-containing DNA by the type II DNA-binding protein TF1. , 1996, Journal of molecular biology.

[43]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[44]  N. Seeman,et al.  Sequence-specific Recognition of Double Helical Nucleic Acids by Proteins (base Pairs/hydrogen Bonding/recognition Fidelity/ion Binding) , 2022 .

[45]  R. Gumport,et al.  Determining the DNA sequence elements required for binding integration host factor to two different target sites , 1994, Journal of bacteriology.

[46]  T. Megraw,et al.  The mitochondrial histone HM: an evolutionary link between bacterial HU and nuclear HMG1 proteins. , 1994, Biochimie.

[47]  V. Hsu,et al.  A 1H-NMR study of the transcription factor 1 from Bacillus subtilis phage SPO1 by selective 2H-labeling. Complete assignment and structural analysis of the aromatic resonances for a 22-kDa homodimer. , 1993, European journal of biochemistry.

[48]  E. Geiduschek,et al.  Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1. , 1990, The Journal of biological chemistry.

[49]  H. Nash,et al.  Specific photocrosslinking of DNA-protein complexes: identification of contacts between integration host factor and its target DNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[50]  G. Shaw,et al.  Anatomy of a Flexer–DNA Complex inside a Higher-Order Transposition Intermediate , 1996, Cell.

[51]  G. W. Hatfield,et al.  Transcriptional activation by protein-induced DNA bending: evidence for a DNA structural transmission model. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Gumport,et al.  Examining the contribution of a dA+dT element to the conformation of Escherichia coli integration host factor-DNA complexes. , 1996, Nucleic acids research.

[53]  E. Geiduschek,et al.  Effects of mutations at amino acid 61 in the arm of TF1 on its DNA-binding properties. , 1990, Journal of molecular biology.

[54]  Stephen K. Burley,et al.  Co-crystal structure of TBP recognizing the minor groove of a TATA element , 1993, Nature.

[55]  P. Vignais,et al.  The IHF proteins of Rhodobacter capsulatus and Pseudomonas aeruginosa. , 1994, Biochimie.

[56]  David A. Case,et al.  Structural basis for DNA bending by the architectural transcription factor LEF-1 , 1995, Nature.

[57]  R. Haselkorn,et al.  Protein HU from the cyanobacterium Anabaena. , 1994, Biochimie.

[58]  A M Gronenborn,et al.  Intercalation, DNA Kinking, and the Control of Transcription , 1996, Science.

[59]  Stephen K. Burley,et al.  1.9 Å resolution refined structure of TBP recognizing the minor groove of TATAAAAG , 1994, Nature Structural Biology.