Weight distributions of cyclic codes with respect to pairwise coprime order elements

Let F r be an extension of a finite field F q with r = q m . Let each g i be of order n i in F r * and gcd ? ( n i , n j ) = 1 for 1 ≤ i ? j ≤ u . We define a cyclic code over F q by C ( q , m , n 1 , n 2 , ? , n u ) = { C ( a 1 , a 2 , ? , a u ) : a 1 , a 2 , ? , a u ? F r } , where C ( a 1 , a 2 , ? , a u ) = ( Tr r / q ( ? i = 1 u a i g i 0 ) , ? , Tr r / q ( ? i = 1 u a i g i n - 1 ) ) and n = n 1 n 2 ? n u . In this paper, we present a method to compute the weights of C ( q , m , n 1 , n 2 , ? , n u ) . Further, we determine the weight distributions of the cyclic codes C ( q , m , n 1 , n 2 ) and C ( q , m , n 1 , n 2 , 1 ) .

[1]  Anne Canteaut,et al.  Weight Divisibility of Cyclic Codes, Highly Nonlinear Functions on F2m, and Crosscorrelation of Maximum-Length Sequences , 2000, SIAM J. Discret. Math..

[2]  Cunsheng Ding,et al.  The Weight Enumerator of a Class of Cyclic Codes , 2011, IEEE Transactions on Information Theory.

[3]  Keqin Feng,et al.  On the Weight Distributions of Two Classes of Cyclic Codes , 2008, IEEE Transactions on Information Theory.

[4]  Maosheng Xiong,et al.  The weight distributions of a class of cyclic codes II , 2011, Finite Fields Their Appl..

[5]  Philippe Delsarte,et al.  On subfield subcodes of modified Reed-Solomon codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[6]  Jing Yang,et al.  Weight Distribution of a Class of Cyclic Codes With Arbitrary Number of Zeros , 2013, IEEE Transactions on Information Theory.

[7]  Gennian Ge,et al.  The Weight Distribution of a Class of Cyclic Codes Related to Hermitian Forms Graphs , 2012, IEEE Transactions on Information Theory.

[8]  P. Delsarte,et al.  Irreducible binary cyclic codes of even dimension , 1969 .

[9]  Cunsheng Ding,et al.  A class of three-weight cyclic codes , 2013, Finite Fields Their Appl..

[10]  Maosheng Xiong The weight distributions of a class of cyclic codes II , 2014, Des. Codes Cryptogr..

[11]  Jing Yang,et al.  Weight Distributions of a Class of Cyclic Codes with Arbitrary Number of Zeros II , 2014, ArXiv.

[12]  Tao Feng On cyclic codes of length $${2^{2^r}-1}$$ with two zeros whose dual codes have three weights , 2012, Des. Codes Cryptogr..

[13]  Cunsheng Ding,et al.  The weight distribution of a class of linear codes from perfect nonlinear functions , 2006, IEEE Transactions on Information Theory.

[14]  Lei Hu,et al.  The weight distribution of a class of p-ary cyclic codes , 2010, Finite Fields Their Appl..

[15]  Cunsheng Ding,et al.  The Weight Distributions of the Duals of Cyclic Codes With Two Zeros , 2011, IEEE Transactions on Information Theory.

[16]  R. Mc Eliece Information processing - A class of two- weight codes , 1966 .

[17]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[18]  Yixian Yang,et al.  The Weight Distributions of Cyclic Codes and Elliptic Curves , 2011, IEEE Transactions on Information Theory.

[19]  Robert Segal,et al.  Weight distributions of some irreducible cyclic codes , 1986 .

[20]  Chengju Li,et al.  Weight Distributions of Two Classes of Cyclic Codes With Respect to Two Distinct Order Elements , 2013, IEEE Transactions on Information Theory.

[21]  Tao Feng,et al.  Evaluation of the Weight Distribution of a Class of Cyclic Codes Based on Index 2 Gauss Sums , 2012, IEEE Transactions on Information Theory.

[22]  Robert J. McEliece,et al.  Weights of Irreducible Cyclic Codes , 1972, Inf. Control..

[23]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[24]  Nigel Boston,et al.  The weight distributions of cyclic codes with two zeros and zeta functions , 2010, J. Symb. Comput..

[25]  Maosheng Xiong,et al.  The weight distributions of a class of cyclic codes III , 2012, Finite Fields Their Appl..

[26]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[27]  Anuradha Sharma,et al.  The weight distribution of some irreducible cyclic codes , 2012, Finite Fields Their Appl..

[28]  Rudolf Lide,et al.  Finite fields , 1983 .

[29]  Kalle Ranto,et al.  Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros , 2007, Finite Fields Their Appl..

[30]  Keqin Feng,et al.  Weight distribution of some reducible cyclic codes , 2008, Finite Fields Their Appl..

[31]  Cunsheng Ding,et al.  Cyclic codes from cyclotomic sequences of order four , 2012, Finite Fields Their Appl..

[32]  R. Schoof Families of curves and weight distributions of codes , 1995, math/9504222.

[33]  Yuansheng Tang,et al.  Cyclic Codes and Sequences: The Generalized Kasami Case , 2009, IEEE Transactions on Information Theory.

[34]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[35]  Pascale Charpin,et al.  Cyclic codes with few weights and Niho exponents , 2004, J. Comb. Theory, Ser. A.

[36]  Cunsheng Ding,et al.  Hamming weights in irreducible cyclic codes , 2011, Discret. Math..

[37]  Gerardo Vega,et al.  The Weight Distribution of an Extended Class of Reducible Cyclic Codes , 2012, IEEE Transactions on Information Theory.

[38]  Cunsheng Ding,et al.  A Family of Five-Weight Cyclic Codes and Their Weight Enumerators , 2013, IEEE Transactions on Information Theory.

[39]  R. McEliece Irreducible Cyclic Codes and Gauss Sums , 1975 .

[40]  Gary McGuire On three weights in cyclic codes with two zeros , 2004, Finite Fields Their Appl..

[41]  G. Myerson Period polynomials and Gauss sums for finite fields , 1981 .