On Strong Normalization in the Intersection Type Discipline

We give a proof for the strong normalization result in the intersection type discipline, which we obtain by putting together some well-known results and proof techniques. Our proof uses a variant of Klop's extended λ-calculus, for which it is shown that strong normalization is equivalent to weak normalization. This is proved here by means of a finiteness of developments theorem, obtained following de Vrijer's combinatory technique. Then we use the standard argument, formalized by Levy as "the creation of redexes is decreasing" and implemented in proofs of weak normalization by Turing, and Coppo and Dezani for the intersection type discipline, to show that a typable expression of the extended calculus is normalizing.

[1]  Paula Severi,et al.  Perpetual Reductions in Lambda-Calculus , 1999, Inf. Comput..

[2]  Mizuhito Ogawa,et al.  Uniform Normalisation beyond Orthogonality , 2001, RTA.

[3]  W. Tait A realizability interpretation of the theory of species , 1975 .

[4]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[5]  Assaf J. Kfoury,et al.  Addendum to ``New Notions of Reduction and Non-Semantic Proofs of Beta Strong Normalization in Typed Lambda Calculi'''' , 1995 .

[6]  P. Sallé Une extension de la theorie des types en λ-calcul , 1978 .

[7]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[8]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[9]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[10]  J. Girard,et al.  Proofs and types , 1989 .

[11]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[12]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[13]  Morten Heine Sørensen,et al.  Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..

[14]  Stephen Cole Kleene,et al.  On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.

[15]  Assaf J. Kfoury,et al.  New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[16]  Michel Parigot Internal Labellings in Lambda-Calculus , 1990, MFCS.

[17]  Mariangiola Dezani-Ciancaglini,et al.  Functional Characters of Solvable Terms , 1981, Math. Log. Q..

[18]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[19]  Fairouz Kamareddine Postponement, conservation and preservation of strong normalization for generalized reduction , 2000, J. Log. Comput..

[20]  Patrick Sale Une Extension de la Theorie des Types en lambda-Calcul , 1978, ICALP.

[21]  Steffen van Bakel,et al.  Intersection Type Assignment Systems , 1995, Theor. Comput. Sci..

[22]  J. Roger Hindley,et al.  The simple semantics for Coppe-Dezani-Sallé types , 1982, Symposium on Programming.

[23]  Roel C. de Vrijer A Direct Proof of the Finite Developments Theorem , 1985, J. Symb. Log..

[24]  J. Roger Hindley,et al.  Types with intersection: An introduction , 1992, Formal Aspects of Computing.