On Strong Normalization in the Intersection Type Discipline
暂无分享,去创建一个
[1] Paula Severi,et al. Perpetual Reductions in Lambda-Calculus , 1999, Inf. Comput..
[2] Mizuhito Ogawa,et al. Uniform Normalisation beyond Orthogonality , 2001, RTA.
[3] W. Tait. A realizability interpretation of the theory of species , 1975 .
[4] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[5] Assaf J. Kfoury,et al. Addendum to ``New Notions of Reduction and Non-Semantic Proofs of Beta Strong Normalization in Typed Lambda Calculi'''' , 1995 .
[6] P. Sallé. Une extension de la theorie des types en λ-calcul , 1978 .
[7] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[8] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[9] Mariangiola Dezani-Ciancaglini,et al. A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.
[10] J. Girard,et al. Proofs and types , 1989 .
[11] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[12] Mariangiola Dezani-Ciancaglini,et al. An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..
[13] Morten Heine Sørensen,et al. Strong Normalization from Weak Normalization in Typed Lambda-Calculi , 1997, Inf. Comput..
[14] Stephen Cole Kleene,et al. On the interpretation of intuitionistic number theory , 1945, Journal of Symbolic Logic.
[15] Assaf J. Kfoury,et al. New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[16] Michel Parigot. Internal Labellings in Lambda-Calculus , 1990, MFCS.
[17] Mariangiola Dezani-Ciancaglini,et al. Functional Characters of Solvable Terms , 1981, Math. Log. Q..
[18] Philippe de Groote,et al. The Conservation Theorem revisited , 1993, TLCA.
[19] Fairouz Kamareddine. Postponement, conservation and preservation of strong normalization for generalized reduction , 2000, J. Log. Comput..
[20] Patrick Sale. Une Extension de la Theorie des Types en lambda-Calcul , 1978, ICALP.
[21] Steffen van Bakel,et al. Intersection Type Assignment Systems , 1995, Theor. Comput. Sci..
[22] J. Roger Hindley,et al. The simple semantics for Coppe-Dezani-Sallé types , 1982, Symposium on Programming.
[23] Roel C. de Vrijer. A Direct Proof of the Finite Developments Theorem , 1985, J. Symb. Log..
[24] J. Roger Hindley,et al. Types with intersection: An introduction , 1992, Formal Aspects of Computing.