The FLASHES Survey. I. Integral Field Spectroscopy of the CGM around 48 z ≃ 2.3–3.1 QSOs

We present the pilot study component of the Fluorescent Lyman-Alpha Structures in High-z Environments (FLASHES) Survey; the largest integral-field spectroscopy survey to date of the circumgalactic medium at $z=2.3-3.1$. We observed 48 quasar fields between 2015 and 2018 with the Palomar Cosmic Web Imager (Matuszewski et al. 2010). Extended HI Lyman-$\mathrm{\alpha}$ emission is discovered around 42/48 of the observed quasars, ranging in projected, flux-weighted radius from 21-71 proper kiloparsecs (pkpc), with 26 nebulae exceeding $100\mathrm{~pkpc}$ in effective diameter. The circularly averaged surface brightness radial profile peaks at a maximum of $\mathrm{1\times 10^{-17}~erg~s^{-1}~cm^{-2}~arcsec^{-2}}$ ($2\times10^{-15}~\mathrm{erg~s^{-1}~cm^{-2}~arcsec^{-2}}$ adjusted for cosmological dimming) and luminosities range from $1.9\times10^{43}~\mathrm{erg~s^{-1}}$ to $-14.1\times10^{43}~\mathrm{erg~s^{-1}}$. The emission appears to have a highly eccentric morphology and a maximum covering factor of $50\%$ ($60\%$ for giant nebulae). On average, the nebular spectra are red-shifted with respect to both the systemic redshift and Ly$\alpha$ peak of the quasar spectrum. The integrated spectra of the nebulae mostly have single or double-peaked line shapes with global dispersions ranging from $167~\mathrm{km~s^{-1}}$ to $690~\mathrm{km~s^{-1}}$, though the individual (Gaussian) components of lines with complex shapes mostly appear to have dispersions $\leq 400$ $\mathrm{km~s^{-1}}$, and the flux-weighted velocity centroids of the lines vary by thousands of $ \mathrm{km~s^{-1}}$ with respect to the systemic QSO redshifts. Finally, the root-mean-square velocities of the nebulae are found to be consistent with gravitational motions expected in dark matter halos of mass $\mathrm{M_h \simeq10^{12.5} M_\odot}$. We compare these results to existing surveys at both higher and lower redshift.

[1]  Anna Moore,et al.  Intergalactic Medium Emission Observations with the Cosmic Web Imager. II. Discovery of Extended, Kinematically Linked Emission around SSA22 Lyα Blob 2 , 2014 .

[2]  Maarten Schmidt,et al.  VLA observations of objects in the Palomar Bright Quasar Survey , 1989 .

[3]  Robert H. Becker,et al.  THE LAST OF FIRST: THE FINAL CATALOG AND SOURCE IDENTIFICATIONS , 2015, 1501.01555.

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  Joop Schaye,et al.  Rest-frame ultraviolet line emission from the intergalactic medium at: Rest-frame UV emission from the high-z IGM , 2012 .

[6]  J. Xavier Prochaska,et al.  A giant protogalactic disk linked to the cosmic web , 2015, Nature.

[7]  M. Loupias,et al.  MUSE from Europe to the Chilean Sky , 2014, Astronomical Telescopes and Instrumentation.

[8]  J. Schaye,et al.  The accretion history of dark matter haloes – II. The connections with the mass power spectrum and the density profile , 2015, 1501.04382.

[9]  K. Viironen,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey: Early Report , 2010, 1012.3002.

[10]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[11]  Simon J. Lilly,et al.  UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT z ∼ 3.5 REVEALED WITH MUSE , 2016, 1605.01422.

[12]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[13]  J. Neill,et al.  Multi-filament gas inflows fuelling young star-forming galaxies , 2019, Nature Astronomy.

[14]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[15]  Anna Moore,et al.  INTERGALACTIC MEDIUM EMISSION OBSERVATIONS WITH THE COSMIC WEB IMAGER. I. THE CIRCUM-QSO MEDIUM OF QSO 1549+19, AND EVIDENCE FOR A FILAMENTARY GAS INFLOW , 2014, 1402.4816.

[16]  David F. Hilyard,et al.  The Keck Cosmic Web Imager Integral Field Spectrograph , 2018, The Astrophysical Journal.

[17]  L. Girardi,et al.  GALEX catalogs of UV sources: statistical properties and sample science applications: hot white dwarfs in the Milky Way , 2011 .

[18]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[19]  Ran Wang,et al.  Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at z = 2.45 , 2018, The Astrophysical Journal.

[20]  L. Wisotzki,et al.  The large- and small-scale properties of the intergalactic gas in the Slug Ly α nebula revealed by MUSE Heiiemission observations , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[22]  S. Borgani,et al.  The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics , 2013, 1301.1682.

[23]  I. P'erez-Fournon,et al.  Discovery of a giant and luminous Lyα+C IV+He II nebula at z = 3.326 with extreme emission line ratios , 2019, Astronomy & Astrophysics.

[24]  Anna M. Moore,et al.  The Cosmic Web Imager: an integral field spectrograph for the Hale Telescope at Palomar Observatory: instrument design and first results , 2010, Astronomical Telescopes + Instrumentation.

[25]  Elisabeta Lusso,et al.  QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surroundingz∼ 3 quasars , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  Joop Schaye,et al.  How the diffuse Universe cools , 2013, 1301.5330.

[27]  C. Steidel,et al.  THE HALO MASSES AND GALAXY ENVIRONMENTS OF HYPERLUMINOUS QSOs AT z ≃ 2.7 IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1204.3636.

[28]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[29]  I. Smail,et al.  Gas filaments of the cosmic web located around active galaxies in a protocluster , 2019, Science.

[30]  A. Myers,et al.  The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.

[31]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[32]  Anna M. Moore,et al.  A Newly Forming Cold Flow Protogalactic Disk, a Signature of Cold Accretion from the Cosmic Web , 2016 .

[33]  Garching,et al.  THE STACKED LYα EMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OF z ∼ 2 QUASARS , 2016, 1604.02942.

[34]  F. Anders,et al.  Where is the fuzz? Undetected Lyman α nebulae around quasars at z ~ 2.3 , 2015, 1502.05132.

[35]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[36]  A. Myers,et al.  The 2dF-SDSS LRG and QSO survey: QSO clustering and the L-z degeneracy , 2006, astro-ph/0612401.

[37]  E. Wright,et al.  A NEW POPULATION OF HIGH-z, DUSTY Lyα EMITTERS AND BLOBS DISCOVERED BY WISE: FEEDBACK CAUGHT IN THE ACT? , 2012, 1205.4030.

[38]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[39]  Garching,et al.  Inspiraling Halo Accretion Mapped in Lyman-$\alpha$ Emission around a $z\sim3$ Quasar , 2017, 1709.08228.

[40]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[41]  Anna Moore,et al.  INTERGALACTIC MEDIUM EMISSION OBSERVATIONS WITH THE COSMIC WEB IMAGER. II. DISCOVERY OF EXTENDED, KINEMATICALLY LINKED EMISSION AROUND SSA22 Lyα BLOB 2 , 2014, 1402.4809.

[42]  J. Prochaska,et al.  Detection of Pristine Gas Two Billion Years After the Big Bang , 2011, Science.

[43]  M. Dijkstra,et al.  A SYSTEMATIC STUDY OF Lyα TRANSFER THROUGH OUTFLOWING SHELLS: MODEL PARAMETER ESTIMATION , 2015, 1506.03836.

[44]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[45]  E. Wright,et al.  A New Population of High Redshift, Dusty Lyman-Alpha Emitters and Blobs Discovered by WISE , 2012, 1205.4030.

[46]  Hai Fu,et al.  THE DATA REDUCTION PIPELINE FOR THE SDSS-IV MaNGA IFU GALAXY SURVEY , 2016, 1607.08619.

[47]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[48]  Extended Lyman-$\alpha$ emission around bright quasars , 2006, astro-ph/0603835.

[49]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[50]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.