暂无分享,去创建一个
[1] Temperley-Lieb. Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics , 2007 .
[2] Robert E. Tarjan,et al. Gauss Codes, Planar Hamiltonian Graphs, and Stack-Sortable Permutations , 1984, J. Algorithms.
[3] V. Manturov,et al. A proof of Vassiliev's conjecture on the planarity of singular links , 2005 .
[4] Grant Cairns,et al. THE PLANARITY PROBLEM II , 1996 .
[5] Louis H. Kauffman,et al. Mathematics of Quantum Computation and Quantum Technology , 2007 .
[6] Igor Potapov,et al. Automata on Gauss Words , 2009, LATA.
[7] L. Lovász,et al. A forbidden substructure characterization of Gauss codes , 1976 .
[8] Samson Abramsky,et al. Temperley−Lieb algebra: From knot theory to logic and computation via quantum mechanics , 2009, 0910.2737.
[9] J. Carter,et al. Classifying immersed curves , 1991 .
[10] Stéphane Demri,et al. LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[11] Dan Suciu,et al. Typechecking for XML transformers , 2000, J. Comput. Syst. Sci..
[12] Valtteri Niemi,et al. Morphic Images of Gauss Codes , 1993, Developments in Language Theory.
[13] Jeffrey C. Lagarias,et al. The computational complexity of knot and link problems , 1999, JACM.
[14] Blerta Shtylla,et al. On the realization of double occurrence words , 2007, Discret. Math..
[15] Bruno Courcelle LaBRI. Diagonal walks on plane graphs and local duality , 2006 .
[16] Grant Cairns,et al. THE PLANARITY PROBLEM FOR SIGNED GAUSS WORDS , 1993 .
[17] Thomas Schwentick,et al. Finite state machines for strings over infinite alphabets , 2004, TOCL.
[18] Thomas Schwentick,et al. On Notions of Regularity for Data Languages , 2007, FCT.
[19] Nissim Francez,et al. Finite-Memory Automata , 1994, Theor. Comput. Sci..
[20] Vitaliy Kurlin,et al. Gauss paragraphs of classical links and a characterization of virtual link groups , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.
[21] Rusins Freivalds,et al. Knot Theory, Jones Polynomial and Quantum Computing , 2005, MFCS.
[22] Louis H. Kauffman,et al. Topological quantum computing and the Jones polynomial , 2006, SPIE Defense + Commercial Sensing.
[23] Louis H. Kauffman. Virtual Knot Theory , 1999, Eur. J. Comb..
[24] Patrice Ossona de Mendez,et al. On a Characterization of Gauss Codes , 1999, Discret. Comput. Geom..