On Descriptional Complexity of the Planarity Problem for Gauss Words

In this paper we investigate the descriptional complexity of knot theoretic problems and show upper bounds for planarity problem of signed and unsigned knot diagrams represented by Gauss words. Since a topological equivalence of knots can involve knot diagrams with arbitrarily many crossings then Gauss words will be considered as strings over an infinite (unbounded) alphabet. For establishing the upper bounds on recognition of knot properties, we study these problems in a context of automata models over an infinite alphabet.

[1]  Temperley-Lieb Temperley-Lieb Algebra: From Knot Theory to Logic and Computation via Quantum Mechanics , 2007 .

[2]  Robert E. Tarjan,et al.  Gauss Codes, Planar Hamiltonian Graphs, and Stack-Sortable Permutations , 1984, J. Algorithms.

[3]  V. Manturov,et al.  A proof of Vassiliev's conjecture on the planarity of singular links , 2005 .

[4]  Grant Cairns,et al.  THE PLANARITY PROBLEM II , 1996 .

[5]  Louis H. Kauffman,et al.  Mathematics of Quantum Computation and Quantum Technology , 2007 .

[6]  Igor Potapov,et al.  Automata on Gauss Words , 2009, LATA.

[7]  L. Lovász,et al.  A forbidden substructure characterization of Gauss codes , 1976 .

[8]  Samson Abramsky,et al.  Temperley−Lieb algebra: From knot theory to logic and computation via quantum mechanics , 2009, 0910.2737.

[9]  J. Carter,et al.  Classifying immersed curves , 1991 .

[10]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[11]  Dan Suciu,et al.  Typechecking for XML transformers , 2000, J. Comput. Syst. Sci..

[12]  Valtteri Niemi,et al.  Morphic Images of Gauss Codes , 1993, Developments in Language Theory.

[13]  Jeffrey C. Lagarias,et al.  The computational complexity of knot and link problems , 1999, JACM.

[14]  Blerta Shtylla,et al.  On the realization of double occurrence words , 2007, Discret. Math..

[15]  Bruno Courcelle LaBRI Diagonal walks on plane graphs and local duality , 2006 .

[16]  Grant Cairns,et al.  THE PLANARITY PROBLEM FOR SIGNED GAUSS WORDS , 1993 .

[17]  Thomas Schwentick,et al.  Finite state machines for strings over infinite alphabets , 2004, TOCL.

[18]  Thomas Schwentick,et al.  On Notions of Regularity for Data Languages , 2007, FCT.

[19]  Nissim Francez,et al.  Finite-Memory Automata , 1994, Theor. Comput. Sci..

[20]  Vitaliy Kurlin,et al.  Gauss paragraphs of classical links and a characterization of virtual link groups , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Rusins Freivalds,et al.  Knot Theory, Jones Polynomial and Quantum Computing , 2005, MFCS.

[22]  Louis H. Kauffman,et al.  Topological quantum computing and the Jones polynomial , 2006, SPIE Defense + Commercial Sensing.

[23]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[24]  Patrice Ossona de Mendez,et al.  On a Characterization of Gauss Codes , 1999, Discret. Comput. Geom..