MicroRNA regulation and interspecific variation of gene expression.

MicroRNAs (miRNAs) modulate expression of their target genes in various tissues and at different developmental stages, but it is unclear whether they drive cross-species variation in gene expression. By comparing data from mammal and fly species we found that the cross-species expression variation of miRNA targets is significantly lower than that of other genes. This implies that miRNAs can affect gene expression by reducing stochastic noise, buffering cross-species variation and constraining evolutionary gene expression variation.

[1]  Andrew G. Clark,et al.  Evolutionary changes in cis and trans gene regulation , 2004, Nature.

[2]  S. Pääbo,et al.  Intra- and Interspecific Variation in Primate Gene Expression Patterns , 2002, Science.

[3]  S. Pääbo,et al.  Parallel Patterns of Evolution in the Genomes and Transcriptomes of Humans and Chimpanzees , 2005, Science.

[4]  Ben Shen,et al.  Microbial genomics for the improvement of natural product discovery. , 2006, Current opinion in microbiology.

[5]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[6]  Kevin P. White,et al.  A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression , 2005, Nature.

[7]  Scott A. Rifkin,et al.  Evolution of gene expression in the Drosophila melanogaster subgroup , 2003, Nature Genetics.

[8]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[9]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[10]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[11]  C. Wasternack,et al.  Degradation of pyrimidines and pyrimidine analogs--pathways and mutual influences. , 1980, Pharmacology & therapeutics.

[12]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  N. Barkai,et al.  A genetic signature of interspecies variations in gene expression , 2006, Nature Genetics.

[14]  Wen-Hsiung Li,et al.  Gene essentiality, gene duplicability and protein connectivity in human and mouse. , 2007, Trends in genetics : TIG.

[15]  W. Hsu,et al.  A gene cluster involved in pyrimidine reductive catabolism from Brevibacillus agri NCHU1002. , 2003, Biochemical and biophysical research communications.

[16]  Q. Cui,et al.  Principles of microRNA regulation of a human cellular signaling network , 2006, Molecular systems biology.

[17]  M. Graille,et al.  Catalytic Mechanism and Structure of Viral Flavin-dependent Thymidylate Synthase ThyX* , 2006, Journal of Biological Chemistry.

[18]  S. Bergmann,et al.  Similarities and Differences in Genome-Wide Expression Data of Six Organisms , 2003, PLoS biology.

[19]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[20]  T. West Isolation and characterization of an Escherichia coli B mutant strain defective in uracil catabolism. , 1998, Canadian journal of microbiology.

[21]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[22]  Patrick Forterre,et al.  An Alternative Flavin-Dependent Mechanism for Thymidylate Synthesis , 2002, Science.

[23]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[24]  M. Fischbach,et al.  The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis , 2007, Proceedings of the National Academy of Sciences.

[25]  A. Osterman A hidden metabolic pathway exposed. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Walsh,et al.  Two interconverting Fe(IV) intermediates in aliphatic chlorination by the halogenase CytC3. , 2007, Nature chemical biology.

[27]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[28]  Colin D. Meiklejohn,et al.  Sex-Dependent Gene Expression and Evolution of the Drosophila Transcriptome , 2003, Science.

[29]  J. Ogawa,et al.  Barbiturase, a Novel Zinc-containing Amidohydrolase Involved in Oxidative Pyrimidine Metabolism* , 2002, The Journal of Biological Chemistry.

[30]  N. Rajewsky,et al.  Natural selection on human microRNA binding sites inferred from SNP data , 2006, Nature Genetics.

[31]  J. Rawls Analysis of Pyrimidine Catabolism in Drosophila melanogaster Using Epistatic Interactions With Mutations of Pyrimidine Biosynthesis and β-Alanine Metabolism , 2006, Genetics.

[32]  N. Rajewsky,et al.  Cell-type-specific signatures of microRNAs on target mRNA expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Inwood,et al.  A previously undescribed pathway for pyrimidine catabolism. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Gibson,et al.  Mixed-model reanalysis of primate data suggests tissue and species biases in oligonucleotide-based gene expression profiles. , 2003, Genetics.

[35]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[36]  A. Khodursky,et al.  Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Lynch,et al.  The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans , 2005, Nature Genetics.

[38]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[39]  C. Walsh,et al.  Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis , 2005, Nature.

[40]  E. Kos,et al.  Uracil Catabolism by Escherichia coli K12S , 1978, Zeitschrift fur Naturforschung. Section C, Biosciences.

[41]  J. Piškur,et al.  A gene duplication led to specialized γ‐aminobutyrate and β‐alanine aminotransferase in yeast , 2007, The FEBS journal.

[42]  J. Piškur,et al.  Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. , 2001, Genetics.

[43]  Terence P. Speed,et al.  Expression profiling in primates reveals a rapid evolution of human transcription factors , 2006, Nature.

[44]  Julius Brennecke,et al.  Denoising feedback loops by thresholding--a new role for microRNAs. , 2006, Genes & development.