Allelopathic potential of the extracts of non-galled stems and globoid stem galls of Eremanthus erythropappus (DC) McLeish (Asteraceae)

[1]  H. Shao,et al.  Chemical composition and phytotoxic activity of the essential oil of Artemisia sieversiana growing in Xinjiang, China , 2020, Natural product research.

[2]  Alexandra G. Durán,et al.  Allelopathy: The Chemical Language of Plants. , 2020, Progress in the chemistry of organic natural products.

[3]  Rosy Mary dos Santos Isaias,et al.  How Galling Organisms Manipulate the Secondary Metabolites in the Host Plant Tissues? A Histochemical Overview in Neotropical Gall Systems , 2020, Reference Series in Phytochemistry.

[4]  Francisco A Macías,et al.  Recent advances in allelopathy for weed control: from knowledge to applications. , 2019, Pest management science.

[5]  L. Andrade-Vieira,et al.  Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa , 2019, Scientia Horticulturae.

[6]  A. Demuner,et al.  Allelopathic activity and chemical constituents of extracts from roots of Euphorbia heterophylla L , 2019, Natural product research.

[7]  C. Zini,et al.  Structural and Chemical Profiles of Myrcia splendens (Myrtaceae) Leaves Under the Influence of the Galling Nexothrips sp. (Thysanoptera) , 2018, Front. Plant Sci..

[8]  J. Han,et al.  Functional characterization of an oxidosqualene cyclase (PdFRS) encoding a monofunctional friedelin synthase in Populus davidiana , 2018, Planta.

[9]  O. D. H. Santos,et al.  Chemical constituents and allelopathic activity of the essential oil from leaves of Eremanthus erythropappus , 2018 .

[10]  C. Laosinwattana,et al.  Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. , 2017, Molecules.

[11]  R. Isaias,et al.  Reacquisition of New Meristematic Sites Determines the Development of a New Organ, the Cecidomyiidae Gall on Copaifera langsdorffii Desf. (Fabaceae) , 2017, Front. Plant Sci..

[12]  R. Isaias,et al.  Influence of auxin and phenolic accumulation on the patterns of cell differentiation in distinct gall morphotypes on Piptadenia gonoacantha (Fabaceae) , 2017 .

[13]  Min-li Yang,et al.  Isolation of insecticidal components in Inula salsoloides Ostenf. and characterisation of their activities , 2017, Natural product research.

[14]  J. Becerra,et al.  Is autotoxicity responsible for inhibition growth of new conspecific seedlings under the canopy of the invasive Acacia dealbata Link , 2017 .

[15]  J. Becerra,et al.  Leaf and stem galls of Schinus polygamus (Cav.) Cabr (Anacardiaceae): Anatomical and chemical implications , 2016 .

[16]  M. Çam,et al.  Allelopathic Potential of Some Essential Oil Bearing Plant Extracts on Common Lambsquarters (Chenopodium album L.) , 2016 .

[17]  J. Becerra,et al.  Allelopathic effect of the invasive Acacia dealbata Link (Fabaceae) on two native plant species in south-central Chile , 2015 .

[18]  J. Becerra,et al.  Morphological effects at radicle level by direct contact of invasive Acacia dealbata link. , 2015 .

[19]  J. Becerra,et al.  Effects and identification of chemical compounds released from the invasive Acacia dealbata Link , 2015 .

[20]  J. Stehmann,et al.  Allelopathic, cytotoxic and antifungic activities of new dihydrophenanthrenes and other constituents of leaves and roots extracts of Banisteriopsis anisandra (Malpighiaceae) , 2015 .

[21]  L. Modolo,et al.  The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae) , 2014 .

[22]  H. Kato‐Noguchi,et al.  Phytotoxic Potential of Onopordum acanthium L. (Asteraceae) , 2014, Chemistry & biodiversity.

[23]  M. S. Alves,et al.  Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae) , 2013, Molecules.

[24]  K. Shea,et al.  Roots of the Invasive Species Carduus nutans L. and C. acanthoides L. Produce the Phytotoxin Aplotaxene, a Possible Allelochemical , 2013 .

[25]  Hanwen Wu,et al.  Chemical composition of essential oils of four Eucalyptus species and their phytotoxicity on silverleaf nightshade (Solanum elaeagnifolium Cav.) in Australia , 2012, Plant Growth Regulation.

[26]  A. González-Coloma,et al.  Triterpene-based plant defenses , 2011, Phytochemistry Reviews.

[27]  Pranab Ghosha,et al.  Triterpenoids from Quercus suber and their antimicrobial and phytotoxic activities. , 2010 .

[28]  G. Soares,et al.  Phytotoxicity of the extracts of Lonchocarpus muehlbergianus Hassl. (Fabaceae) leaflets and galls on seed germination and early development of lettuce , 2008 .

[29]  Marcelo Silva Silvério,et al.  Propriedades farmacológicas do extrato etanólico de Eremanthus erythropappus (DC.) McLeisch (Asteraceae) , 2008 .

[30]  F. C. Matheus,et al.  Antinociceptive and anti‐inflammatory effects of the essential oil from Eremanthus erythropappus leaves , 2008, The Journal of pharmacy and pharmacology.

[31]  A. S. Filho,et al.  Atividade alelopática de substâncias químicas isoladas da Acacia mangium e suas variações em função do PH , 2008 .

[32]  G. Guilhon,et al.  Allelopathic activity of chemical substances isolated from Brachiaria brizantha cv. Marandu and their variations in function of pH , 2008 .

[33]  A. Anaya,et al.  Pentacyclic Triterpenes with Selective Bioactivity from Sebastiania adenophora Leaves, Euphorbiaceae , 2006, Journal of Chemical Ecology.

[34]  G.L.G. Soares,et al.  Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hassl. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae) , 2006 .

[35]  Dalva Graciano-Ribeiro,et al.  Verniz vitral incolor 500®: uma alternativa de meio de montagem economicamente viável , 2006 .

[36]  A. M. Simonet,et al.  Bioactive Steroids and Triterpenes from Melilotus messanensis and Their Allelopathic Potential , 1997, Journal of Chemical Ecology.

[37]  A. Anaya,et al.  Effects of some compounds isolated fromCelaenodendron mexicanum standl (euphorbiaceae) on seeds and phytopathogenic fungi , 1992, Journal of Chemical Ecology.

[38]  S. Louda,et al.  Chemistry of Cirsium and Carduus: a role in ecological risk assessment for biological control of weeds? , 2003 .

[39]  S. Duke,et al.  Mode of Action of Phytotoxic Terpenoids , 2003 .

[40]  S. Duke Ecophysiological aspects of allelopathy , 2003, Planta.

[41]  O.V.S. Souza,et al.  Estudo farmacognóstico de galhos de Vanillosmopsis erythropappa Schult. Bip. - Asteraceae , 2003 .

[42]  R. Julkunen‐Tiitto,et al.  Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. M. Vieira,et al.  The interplay between plant traits and herbivore attack: a study of a stem galling midge in the neotropics , 1999 .

[44]  G. Fernandes,et al.  Global patterns in local number of insect galling species , 1998 .

[45]  A. M. Simonet,et al.  Potential allelopathic lupane triterpenes from bioactive fractions of melilotus messanensis , 1994 .

[46]  M. Karnovsky,et al.  A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .