Allelopathic potential of the extracts of non-galled stems and globoid stem galls of Eremanthus erythropappus (DC) McLeish (Asteraceae)
暂无分享,去创建一个
[1] H. Shao,et al. Chemical composition and phytotoxic activity of the essential oil of Artemisia sieversiana growing in Xinjiang, China , 2020, Natural product research.
[2] Alexandra G. Durán,et al. Allelopathy: The Chemical Language of Plants. , 2020, Progress in the chemistry of organic natural products.
[3] Rosy Mary dos Santos Isaias,et al. How Galling Organisms Manipulate the Secondary Metabolites in the Host Plant Tissues? A Histochemical Overview in Neotropical Gall Systems , 2020, Reference Series in Phytochemistry.
[4] Francisco A Macías,et al. Recent advances in allelopathy for weed control: from knowledge to applications. , 2019, Pest management science.
[5] L. Andrade-Vieira,et al. Allelopathic potential and phytochemical screening of ethanolic extracts from five species of Amaranthus spp. in the plant model Lactuca sativa , 2019, Scientia Horticulturae.
[6] A. Demuner,et al. Allelopathic activity and chemical constituents of extracts from roots of Euphorbia heterophylla L , 2019, Natural product research.
[7] C. Zini,et al. Structural and Chemical Profiles of Myrcia splendens (Myrtaceae) Leaves Under the Influence of the Galling Nexothrips sp. (Thysanoptera) , 2018, Front. Plant Sci..
[8] J. Han,et al. Functional characterization of an oxidosqualene cyclase (PdFRS) encoding a monofunctional friedelin synthase in Populus davidiana , 2018, Planta.
[9] O. D. H. Santos,et al. Chemical constituents and allelopathic activity of the essential oil from leaves of Eremanthus erythropappus , 2018 .
[10] C. Laosinwattana,et al. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. , 2017, Molecules.
[11] R. Isaias,et al. Reacquisition of New Meristematic Sites Determines the Development of a New Organ, the Cecidomyiidae Gall on Copaifera langsdorffii Desf. (Fabaceae) , 2017, Front. Plant Sci..
[12] R. Isaias,et al. Influence of auxin and phenolic accumulation on the patterns of cell differentiation in distinct gall morphotypes on Piptadenia gonoacantha (Fabaceae) , 2017 .
[13] Min-li Yang,et al. Isolation of insecticidal components in Inula salsoloides Ostenf. and characterisation of their activities , 2017, Natural product research.
[14] J. Becerra,et al. Is autotoxicity responsible for inhibition growth of new conspecific seedlings under the canopy of the invasive Acacia dealbata Link , 2017 .
[15] J. Becerra,et al. Leaf and stem galls of Schinus polygamus (Cav.) Cabr (Anacardiaceae): Anatomical and chemical implications , 2016 .
[16] M. Çam,et al. Allelopathic Potential of Some Essential Oil Bearing Plant Extracts on Common Lambsquarters (Chenopodium album L.) , 2016 .
[17] J. Becerra,et al. Allelopathic effect of the invasive Acacia dealbata Link (Fabaceae) on two native plant species in south-central Chile , 2015 .
[18] J. Becerra,et al. Morphological effects at radicle level by direct contact of invasive Acacia dealbata link. , 2015 .
[19] J. Becerra,et al. Effects and identification of chemical compounds released from the invasive Acacia dealbata Link , 2015 .
[20] J. Stehmann,et al. Allelopathic, cytotoxic and antifungic activities of new dihydrophenanthrenes and other constituents of leaves and roots extracts of Banisteriopsis anisandra (Malpighiaceae) , 2015 .
[21] L. Modolo,et al. The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart.) MacBr (Fabaceae: Mimosoideae) , 2014 .
[22] H. Kato‐Noguchi,et al. Phytotoxic Potential of Onopordum acanthium L. (Asteraceae) , 2014, Chemistry & biodiversity.
[23] M. S. Alves,et al. Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae) , 2013, Molecules.
[24] K. Shea,et al. Roots of the Invasive Species Carduus nutans L. and C. acanthoides L. Produce the Phytotoxin Aplotaxene, a Possible Allelochemical , 2013 .
[25] Hanwen Wu,et al. Chemical composition of essential oils of four Eucalyptus species and their phytotoxicity on silverleaf nightshade (Solanum elaeagnifolium Cav.) in Australia , 2012, Plant Growth Regulation.
[26] A. González-Coloma,et al. Triterpene-based plant defenses , 2011, Phytochemistry Reviews.
[27] Pranab Ghosha,et al. Triterpenoids from Quercus suber and their antimicrobial and phytotoxic activities. , 2010 .
[28] G. Soares,et al. Phytotoxicity of the extracts of Lonchocarpus muehlbergianus Hassl. (Fabaceae) leaflets and galls on seed germination and early development of lettuce , 2008 .
[29] Marcelo Silva Silvério,et al. Propriedades farmacológicas do extrato etanólico de Eremanthus erythropappus (DC.) McLeisch (Asteraceae) , 2008 .
[30] F. C. Matheus,et al. Antinociceptive and anti‐inflammatory effects of the essential oil from Eremanthus erythropappus leaves , 2008, The Journal of pharmacy and pharmacology.
[31] A. S. Filho,et al. Atividade alelopática de substâncias químicas isoladas da Acacia mangium e suas variações em função do PH , 2008 .
[32] G. Guilhon,et al. Allelopathic activity of chemical substances isolated from Brachiaria brizantha cv. Marandu and their variations in function of pH , 2008 .
[33] A. Anaya,et al. Pentacyclic Triterpenes with Selective Bioactivity from Sebastiania adenophora Leaves, Euphorbiaceae , 2006, Journal of Chemical Ecology.
[34] G.L.G. Soares,et al. Reações de defesas químicas e estruturais de Lonchocarpus muehlbergianus Hassl. (Fabaceae) à ação do galhador Euphalerus ostreoides Crawf. (Hemiptera: Psyllidae) , 2006 .
[35] Dalva Graciano-Ribeiro,et al. Verniz vitral incolor 500®: uma alternativa de meio de montagem economicamente viável , 2006 .
[36] A. M. Simonet,et al. Bioactive Steroids and Triterpenes from Melilotus messanensis and Their Allelopathic Potential , 1997, Journal of Chemical Ecology.
[37] A. Anaya,et al. Effects of some compounds isolated fromCelaenodendron mexicanum standl (euphorbiaceae) on seeds and phytopathogenic fungi , 1992, Journal of Chemical Ecology.
[38] S. Louda,et al. Chemistry of Cirsium and Carduus: a role in ecological risk assessment for biological control of weeds? , 2003 .
[39] S. Duke,et al. Mode of Action of Phytotoxic Terpenoids , 2003 .
[40] S. Duke. Ecophysiological aspects of allelopathy , 2003, Planta.
[41] O.V.S. Souza,et al. Estudo farmacognóstico de galhos de Vanillosmopsis erythropappa Schult. Bip. - Asteraceae , 2003 .
[42] R. Julkunen‐Tiitto,et al. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[43] E. M. Vieira,et al. The interplay between plant traits and herbivore attack: a study of a stem galling midge in the neotropics , 1999 .
[44] G. Fernandes,et al. Global patterns in local number of insect galling species , 1998 .
[45] A. M. Simonet,et al. Potential allelopathic lupane triterpenes from bioactive fractions of melilotus messanensis , 1994 .
[46] M. Karnovsky,et al. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .