Optimal satisfiability for propositional calculi and constraint satisfaction problems

We consider the problems of finding the lexicographically minimal (or maximal) satisfying assignment of propositional formulas for different restricted classes of formulas. It turns out that for each class from our framework, these problems are either polynomial time solvable or complete for OptP. We also consider the problem of deciding if in the optimal assignment the largest variable gets value 1. We show that this problem is either in P or PNP complete.

[1]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[2]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[3]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[4]  Harry R. Lewis,et al.  Satisfiability problems for propositional calculi , 1979, Mathematical systems theory.

[5]  Rolf Lindner,et al.  Boolesche Funktionen und postsche Klassen , 1970 .

[6]  Johannes Köbler Strukturelle Komplexität von Anzahlproblemen , 1989 .

[7]  David P. Williamson,et al.  A complete classification of the approximability of maximization problems derived from Boolean constraint satisfaction , 1997, STOC '97.

[8]  Heribert Vollmer,et al.  Complexity Classes of Optimization Functions , 1995, Inf. Comput..

[9]  Luca Trevisan,et al.  Constraint satisfaction: the approximability of minimization problems , 1997, Proceedings of Computational Complexity. Twelfth Annual IEEE Conference.

[10]  Nadia Creignou,et al.  On Generating All Solutions of Generalized Satisfiability Problems , 1997, RAIRO Theor. Informatics Appl..

[11]  Mark W. Krentel Generalizations of Opt P to the Polynomial Hierarchy , 1992, Theor. Comput. Sci..

[12]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[13]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[14]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..

[15]  Heribert Vollmer On Different Reducibility Notions for Function Classes , 1994, STACS.

[16]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[17]  Klaus W. Wagner More Complicated Questions About Maxima and Minima, and Some Closures of NP , 1987, Theor. Comput. Sci..

[18]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[19]  Phokion G. Kolaitis,et al.  The complexity of minimal satisfiability problems , 2001, Inf. Comput..

[20]  Klaus W. Wagner,et al.  The Complexity of Problems Defined by Subclasses of Boolean Functions , 1999 .