Improvements to a triangulation-decomposition algorithm for ordinary differential systems in higher degree cases
暂无分享,去创建一个
[1] Hamid Maarouf,et al. Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal , 2001, J. Symb. Comput..
[2] Marc Moreno Maza,et al. Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .
[3] François Ollivier,et al. Standard Bases of Differential Ideals , 1990, AAECC.
[4] George E. Collins,et al. Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.
[5] Gregory J. Reid,et al. Existence and uniqueness theorems for formal power series solutions of analytic differential systems , 1999, ISSAC '99.
[6] E. Hubert,et al. A note on the Lax pairs for Painlevéequations , 1999 .
[7] C. J. Rust,et al. Rankings of derivatives for elimination algorithms and formal solvability of analytic partial differential equations , 1998 .
[8] Evelyne Hubert,et al. Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..
[9] Dongming Wang,et al. Decomposing Polynomial Systems into Simple Systems , 1998, J. Symb. Comput..
[10] François Ollivier,et al. Algorithmes efficaces pour tester l'identifiabilité locale , 2002 .
[11] Elizabeth L. Mansfield,et al. Symmetry reductions and exact solutions of a class of nonlinear heat equations , 1993, solv-int/9306002.
[12] J. Ritt. Partial differential algebra , 1950 .
[13] A. Seidenberg. An elimination theory for differential algebra , 1959 .
[14] Evelyne Hubert,et al. Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems , 2001, SNSC.
[15] Mohab Safey El Din,et al. New Structure Theorem for Subresultants , 2000, J. Symb. Comput..
[16] P. Clarkson,et al. Nonclassical Reductions of a 3+1-Cubic Nonlinear Schrodinger System , 1998 .
[17] François Lemaire,et al. Computing canonical representatives of regular differential ideals , 2000, ISSAC.
[18] Dongming Wang,et al. Reasoning about Surfaces Using Differential Zero and Ideal Decomposition , 2000, Automated Deduction in Geometry.
[19] Lionel Ducos. Optimizations of the subresultant algorithm , 2000 .
[20] Giuseppa Carrà Ferro. Groebner Bases and Differential Algebra , 1987, AAECC.
[21] P. Aubry,et al. Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .
[22] H P Wynn,et al. Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. , 2001, Mathematical biosciences.
[23] Maurice Janet. Les systémes d'équations aux derivées partielles , 1911 .
[24] Stéphane Dellière. Triangularisation de systèmes constructibles : application à l'évaluation dynamique , 1999 .
[25] François Boulier,et al. Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.
[26] Michael Kalkbrener,et al. A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..
[27] G. Carrà Ferro,et al. Differential Gröbner bases in one variable and in the partial case , 1997 .
[28] E. Hubert,et al. Computing power series solutions of a nonlinear PDE system , 2003, ISSAC '03.
[29] T. Glad,et al. An Algebraic Approach to Linear and Nonlinear Control , 1993 .
[30] Bud Mishra,et al. Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.
[31] Xiao-Shan Gao,et al. Automated reasoning in differential geometry and mechanics using the characteristic set method , 1993, Journal of Automated Reasoning.
[32] Dongming Wang,et al. Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..
[33] 吴文俊. ON THE FOUNDATION OF ALGEBRAIC DIFFERENTIAL GEOMETRY , 1989 .
[34] Wang Dongming. AN ELIMINATION METHOD FOR DIFFERENTIAL POLYNOMIAL SYSTEMS I , 1996 .
[35] Evelyne Hubert,et al. Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.