Improvements to a triangulation-decomposition algorithm for ordinary differential systems in higher degree cases

We introduce new ideas to improve the efficiency and rationality of a triangulation decomposition algorithm. On the one hand we identify and isolate the polynomial remainder sequences in the triangulation-decomposition algorithm. Subresultant polynomial remainder sequences are then used to compute them and their specialization properties are applied for the splittings. The gain is two fold: control of expression swell and reduction of the number of splittings. On the other hand, we remove the role that initials had in previous triangulation-decomposition algorithms. They are not needed in theoretical results and it was expected that they need not appear in the input and output of the algorithms. This is the case of the algorithm presented. New algorithms are presented to compute a subsequent characteristic decomposition from the output of the triangulation decomposition algorithm where the initials need not appear.

[1]  Hamid Maarouf,et al.  Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal , 2001, J. Symb. Comput..

[2]  Marc Moreno Maza,et al.  Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .

[3]  François Ollivier,et al.  Standard Bases of Differential Ideals , 1990, AAECC.

[4]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[5]  Gregory J. Reid,et al.  Existence and uniqueness theorems for formal power series solutions of analytic differential systems , 1999, ISSAC '99.

[6]  E. Hubert,et al.  A note on the Lax pairs for Painlevéequations , 1999 .

[7]  C. J. Rust,et al.  Rankings of derivatives for elimination algorithms and formal solvability of analytic partial differential equations , 1998 .

[8]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[9]  Dongming Wang,et al.  Decomposing Polynomial Systems into Simple Systems , 1998, J. Symb. Comput..

[10]  François Ollivier,et al.  Algorithmes efficaces pour tester l'identifiabilité locale , 2002 .

[11]  Elizabeth L. Mansfield,et al.  Symmetry reductions and exact solutions of a class of nonlinear heat equations , 1993, solv-int/9306002.

[12]  J. Ritt Partial differential algebra , 1950 .

[13]  A. Seidenberg An elimination theory for differential algebra , 1959 .

[14]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems , 2001, SNSC.

[15]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[16]  P. Clarkson,et al.  Nonclassical Reductions of a 3+1-Cubic Nonlinear Schrodinger System , 1998 .

[17]  François Lemaire,et al.  Computing canonical representatives of regular differential ideals , 2000, ISSAC.

[18]  Dongming Wang,et al.  Reasoning about Surfaces Using Differential Zero and Ideal Decomposition , 2000, Automated Deduction in Geometry.

[19]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[20]  Giuseppa Carrà Ferro Groebner Bases and Differential Algebra , 1987, AAECC.

[21]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .

[22]  H P Wynn,et al.  Differential algebra methods for the study of the structural identifiability of rational function state-space models in the biosciences. , 2001, Mathematical biosciences.

[23]  Maurice Janet Les systémes d'équations aux derivées partielles , 1911 .

[24]  Stéphane Dellière Triangularisation de systèmes constructibles : application à l'évaluation dynamique , 1999 .

[25]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[26]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[27]  G. Carrà Ferro,et al.  Differential Gröbner bases in one variable and in the partial case , 1997 .

[28]  E. Hubert,et al.  Computing power series solutions of a nonlinear PDE system , 2003, ISSAC '03.

[29]  T. Glad,et al.  An Algebraic Approach to Linear and Nonlinear Control , 1993 .

[30]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[31]  Xiao-Shan Gao,et al.  Automated reasoning in differential geometry and mechanics using the characteristic set method , 1993, Journal of Automated Reasoning.

[32]  Dongming Wang,et al.  Computing Triangular Systems and Regular Systems , 2000, J. Symb. Comput..

[33]  吴文俊 ON THE FOUNDATION OF ALGEBRAIC DIFFERENTIAL GEOMETRY , 1989 .

[34]  Wang Dongming AN ELIMINATION METHOD FOR DIFFERENTIAL POLYNOMIAL SYSTEMS I , 1996 .

[35]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems , 2001, SNSC.