Shear yield stress of flocculated alumina–zirconia mixed suspensions: effect of solid loading, composition and particle size distribution

[1]  Douglas W. Fuerstenau,et al.  Mutual coagulation of colloidal dispersions , 1966 .

[2]  D. V. Boger,et al.  Direct Yield Stress Measurement with the Vane Method , 1985 .

[3]  R. Stewart,et al.  The rheology of strongly-flocculated suspensions , 1987 .

[4]  John Wang,et al.  Zirconia-toughened alumina (ZTA) ceramics , 1989 .

[5]  F. Lange,et al.  Powder Processing Science and Technology for Increased Reliability , 1989 .

[6]  D. V. Boger,et al.  Surface and rheological properties of zirconia suspensions , 1990 .

[7]  C. Tsenoglou,et al.  Fluidity and optimum packing in suspensions of mixed dissimilar particles , 1990 .

[8]  B. Velamakanni,et al.  Effect of Interparticle Potentials and Sedimentation on Particle Packing Density of Bimodal Particle Distributions During Pressure Filtration , 1991 .

[9]  R. Hoffman Interrelationships of Particle Structure and Flow in Concentrated Suspensions , 1991 .

[10]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[11]  L. Bergström Rheology of Concentrated Suspensions , 1994 .

[12]  D. V. Boger,et al.  Influence of Processing on the Rheology of Titanium Dioxide Pigment Suspensions , 1994 .

[13]  P. Scales,et al.  Effect of Particle Size on Colloidal Zirconia Rheology at the Isoelectric Point , 1995 .

[14]  D. S. Pearson,et al.  Shear modulus and yield stress measurements of attractive alumina particle networks in aqueous slurries , 1996 .

[15]  P. C. Kapur,et al.  Yield stress of suspensions loaded with size distributed particles , 1997 .