Total Variation Minimization and a Class of Binary MRF Models

We observe that there is a strong connection between a whole class of simple binary MRF energies and the Rudin-Osher-Fatemi (ROF) Total Variation minimization approach to image denoising. We show, more precisely, that solutions to binary MRFs can be found by minimizing an appropriate ROF problem, and vice-versa. This leads to new algorithms. We then compare the efficiency of various algorithms.

[1]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[2]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[3]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[4]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[5]  Davi Geiger,et al.  Segmentation by grouping junctions , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[6]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[7]  Giovanni Poggi,et al.  Image segmentation by tree-structured Markov random fields , 1999, IEEE Signal Processing Letters.

[8]  B. Zalesky Network flow optimization for restoration of images , 2001 .

[9]  A. Chambolle Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1 , 2001 .

[10]  G. Bouchitté,et al.  The calibration method for the Mumford-Shah functional and free-discontinuity problems , 2001, math/0105013.

[11]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[12]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  James C. Gee,et al.  Two--level MRF Models for Image Restoration and Segmentation , 2004, BMVC.

[15]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  A. Chambolle An algorithm for Mean Curvature Motion , 2004 .

[18]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[19]  Jérôme Darbon,et al.  Exact Optimization of Discrete Constrained Total Variation Minimization Problems , 2004, IWCIA.

[20]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[21]  E. Cachan,et al.  Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow , 2005 .

[22]  Jérôme Darbon,et al.  A Fast and Exact Algorithm for Total Variation Minimization , 2005, IbPRIA.

[23]  A. Chambolle,et al.  Evolution of characteristic functions of convex sets in the plane by the minimizing total variation flow , 2005 .

[24]  Long Quan,et al.  A Surface Reconstruction Method Using Global Graph Cut Optimization , 2006, International Journal of Computer Vision.

[25]  A. Chambolle,et al.  A characterization of convex calibrable sets in , 2005 .

[26]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[27]  A. Chambolle,et al.  Anisotropic curvature-driven ow of convex sets , 2004 .

[28]  G. Poggi,et al.  A binary tree-structured MRF model for multispectral satellite image segmentation , 2006 .

[29]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..