Parameter Selection in Finite-Element-Model Updating by Global Sensitivity Analysis Using Gaussian Process Metamodel

AbstractParameter selection is a key step in finite-element-model updating (FEMU) because it determines whether the task of FEMU is successful or not. The as-built engineering structures are inevitably subject to many sources of uncertainty such as geometric dimension variability due to manufacture process, inherent random variation of materials, and imprecisely known boundary conditions. Uncertainty involving parameters challenges the task of parameter selection in FEMU. In this paper, the powerful global sensitivity analysis (GSA) is proposed to perform parameter selection in FEMU when uncertainty exists. The Monte Carlo simulation (MCS) method is extensively adopted to perform GSA. However, the brute-force MCS method is likely to be unaffordable and impractical because it entails a large number of model evaluations due to its slow convergence. Therefore, the Gaussian process metamodel is used as the surrogate model of the time-consuming finite-element model to ease the heavy computational burden. Gauss...

[1]  Wei-Xin Ren,et al.  Finite element model updating in structural dynamics by using the response surface method , 2010 .

[2]  Tao Yu,et al.  Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression , 2008 .

[3]  Huajiang Ouyang,et al.  Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment , 2012 .

[4]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[5]  John E. Mottershead,et al.  Stochastic model updating: Part 1—theory and simulated example , 2006 .

[6]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[7]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[8]  J.E. Mottershead,et al.  Stochastic model updating: Part 2—application to a set of physical structures , 2006 .

[9]  Jeremy Rohmer,et al.  Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling , 2011, Comput. Geosci..

[10]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[11]  Furong Gao,et al.  Bayesian migration of Gaussian process regression for rapid process modeling and optimization , 2011 .

[12]  J. Mottershead,et al.  Interval model updating with irreducible uncertainty using the Kriging predictor , 2011 .

[13]  Bojan Likar,et al.  Predictive control of a gas-liquid separation plant based on a Gaussian process model , 2007, Comput. Chem. Eng..

[14]  Wei-Xin Ren,et al.  Dynamic analysis of a half-through concrete-filled steel tubular arch bridge , 2005 .

[15]  M. Friswell,et al.  Perturbation methods for the estimation of parameter variability in stochastic model updating , 2008 .

[16]  Wei-Xin Ren,et al.  Structural Finite Element Model Updating Using Ambient Vibration Test Results , 2005 .

[17]  A. O'Hagan,et al.  Bayesian inference for the uncertainty distribution of computer model outputs , 2002 .

[18]  I. A. Antonov,et al.  An economic method of computing LPτ-sequences , 1979 .

[19]  Yanhui Yang,et al.  Response surface methodology using Gaussian processes: Towards optimizing the trans-stilbene epoxidation over Co2+-NaX catalysts , 2010 .

[20]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[21]  Jian Cheng,et al.  Computational Investigation of Low-Discrepancy Sequences in Simulation Algorithms for Bayesian Networks , 2000, UAI.

[22]  Farrokh Mistree,et al.  Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization , 2001 .

[23]  Ricardo Perera,et al.  Damage identification by response surface based model updating using D-optimal design , 2011 .

[24]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[25]  Michael Link,et al.  Stochastic model updating—Covariance matrix adjustment from uncertain experimental modal data , 2010 .

[26]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[27]  Zdeněk Kala,et al.  Sensitivity assessment of steel members under compression , 2009 .

[28]  Paul Bratley,et al.  Algorithm 659: Implementing Sobol's quasirandom sequence generator , 1988, TOMS.

[29]  P. Guillaume,et al.  Finite element model updating taking into account the uncertainty on the modal parameters estimates , 2006 .

[30]  Ricardo Perera,et al.  A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation , 2012 .

[31]  Radford M. Neal Regression and Classification Using Gaussian Process Priors , 2009 .

[32]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[33]  James M. W. Brownjohn,et al.  Dynamic Assessment of Curved Cable-Stayed Bridge by Model Updating , 2000 .

[34]  Sankaran Mahadevan,et al.  Integration of structural health monitoring and fatigue damage prognosis , 2012 .

[35]  Li Luyi,et al.  Moment-independent importance measure of basic variable and its state dependent parameter solution , 2012 .

[36]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[37]  Jeremy E. Oakley,et al.  Bayesian sensitivity analysis of a nonlinear finite element model , 2012 .

[38]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[39]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .