Carbon nanotube reinforced Cu-10Sn alloy composites: Mechanical and thermal properties

Abstract Multiwall carbon nanotube (CNT) reinforced Cu–10Sn alloy composites were fabricated using high power lasers. Microstructural observations showed that CNTs were retained in the composite matrix after laser processing. The addition of CNTs showed improvement in strain hardening, mechanical and thermal properties of Cu–10Sn alloy. Composites with 12 vol.% CNTs showed more than 80% increase in the Young's modulus and 40% increase in the thermal conductivity of Cu–10Sn alloy. Yield strength estimates using a model based on strengthening mechanisms in metal matrix nanocomposites and thermal conductivities derived from the Maxwell–Garnett effective medium theory were found to be in good agreement with our experimental data.

[1]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[2]  Vamsi Krishna Balla,et al.  Laser processing of SiC-particle-reinforced coating on titanium , 2010 .

[3]  M. Gupta,et al.  Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements , 2007 .

[4]  Quanshui Zheng,et al.  Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites , 2007 .

[5]  Wenzhi Li,et al.  In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating , 2008 .

[6]  N. Ramakrishnan An analytical study on strengthening of particulate reinforced metal matrix composites , 1996 .

[7]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[8]  Vamsi Krishna Balla,et al.  Fabrication of compositionally and structurally graded Ti-TiO2 structures using laser engineered net shaping (LENS). , 2009, Acta biomaterialia.

[9]  Yu-Ting Cheng,et al.  Synthesis and characterization of Ni-P-CNT's nanocomposite film for MEMS applications , 2005 .

[10]  Hui‐Ming Cheng,et al.  Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum , 2004 .

[11]  H. Fraser,et al.  Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures , 2006 .

[12]  Wilfried Kurz,et al.  Epitaxial laser metal forming: analysis of microstructure formation , 1999 .

[13]  S. R. Bakshi,et al.  Carbon nanotube reinforced metal matrix composites - a review , 2010 .

[14]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[15]  E. .. Mittemeijer,et al.  The solubility of C in solid Cu , 2004 .

[16]  S I Cha,et al.  Extraordinary Strengthening Effect of Carbon Nanotubes in Metal‐Matrix Nanocomposites Processed by Molecular‐Level Mixing , 2005, Advanced materials.

[17]  Z. Zhang,et al.  Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength , 2006 .

[18]  M. Gupta,et al.  Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique , 2006 .

[19]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[20]  K. T. Kashyap,et al.  Strengthening in carbon nanotube/aluminium (CNT/Al) composites , 2005 .

[21]  M. L. Griffith,et al.  Solidification in direct metal deposition by LENS processing , 2001 .

[22]  A. Inoue,et al.  Carbon‐Nanotube‐Reinforced Zr‐Based Bulk Metallic Glass Composites and Their Properties , 2004 .

[23]  Amit Bandyopadhyay,et al.  Engineered porous metals for implants , 2008 .

[24]  A. Grabowski,et al.  Optical and conductive properties of AlSi-alloy/SiCp composites: application in modelling CO2 laser processing of composites , 2005 .

[25]  A. Bandyopadhyay,et al.  Laser-assisted Zr/ZrO(2) coating on Ti for load-bearing implants. , 2009, Acta biomaterialia.

[26]  Ana M. Benito,et al.  Evolution of multiwalled carbon-nanotube/SiO2 composites via laser treatment , 2003 .

[27]  Amit Bandyopadhyay,et al.  Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants , 2009, Journal of materials science. Materials in medicine.

[28]  William A. Curtin,et al.  CNT-reinforced ceramics and metals , 2004 .

[29]  P. Dai,et al.  Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition , 2008 .

[30]  Amit Bandyopadhyay,et al.  Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures. , 2008, Acta biomaterialia.

[31]  A. Bandyopadhyay,et al.  Laser processing of bulk Al–12Si alloy: influence of microstructure on thermal properties , 2011 .

[32]  J. Wei,et al.  Improving the performance of lead-free solder reinforced with multi-walled carbon nanotubes , 2006 .

[33]  M. Seki,et al.  Carbon Nanotube/Aluminium Composites with Uniform Dispersion , 2004 .

[34]  S. R. Bakshi,et al.  Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites , 2009 .

[35]  Seong‐Hyeon Hong,et al.  Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites , 2006 .