An omnibus test for the two-sample problem using the empirical characteristic function
暂无分享,去创建一个
[1] D. Darling. The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .
[2] T. W. Anderson. On the Distribution of the Two-Sample Cramer-von Mises Criterion , 1962 .
[3] E. J. Burr. Distribution of the Two-Sample Cramer-Von Mises Criterion for Small Equal Samples , 1963 .
[4] E. J. Burr. Small-Sample Distributions of the Two-sample Cramer-Von Mises' $W^2$ and Watson's $U^2$ , 1964 .
[5] W. Rudin. Real and complex analysis , 1968 .
[6] B. W. Feather,et al. The effect of augmented sensory feedback on the control of salivation. , 1968, Psychophysiology.
[7] C. E. Heathcote. A TEST OF GOODNESS OF FIT FOR SYMMETRIC RANDOM VARIABLES1 , 1972 .
[8] W. Conover. A Kolmogorov Goodness-of-Fit Test for Discontinuous Distributions , 1972 .
[9] Douglas A. Wolfe,et al. Nonparametric Statistical Methods , 1973 .
[10] Michael D. Perlman,et al. Power of the Noncentral F-Test: Effect of Additional Variates on Hotelling's T2-Test , 1974 .
[11] A. Paulson,et al. The estimation of the parameters of the stable laws , 1975 .
[12] A. Pettitt. A two-sample Anderson-Darling rank statistic , 1976 .
[13] C. R. Heathcote,et al. The integrated squared error estimation of parameters , 1977 .
[14] A. Feuerverger,et al. The Empirical Characteristic Function and Its Applications , 1977 .
[15] Constance L. Wood,et al. Large Sample Results for Kolmogorov-Smirnov Statistics for Discrete Distributions , 1978 .
[16] A. Pettitt. Two‐Sample Cramér‐Von Mises Type Rank Statistics , 1979 .
[17] Ioannis A. Koutrouvelis,et al. A goodness-of-fit test of simple hypotheses based on the empirical characteristic function , 1980 .
[18] I. A. Koutrouvelis. Tests for normality in stable laws , 1981 .
[19] A. Feuerverger,et al. On the Efficiency of Empirical Characteristic Function Procedures , 1981 .
[20] Kei Takeuchi,et al. The studentized empirical characteristic function and its application to test for the shape of distribution , 1981 .
[21] S. Csörgo. Multivariate empirical characteristic functions , 1981 .
[22] Michael B. Marcus,et al. Weak Convergence of the Empirical Characteristic Function , 1981 .
[23] S. Csőrgő. Limit Behaviour of the Empirical Characteristic Function , 1981 .
[24] Ioannis A. Koutrouvelis,et al. A Goodness-of-fit Test based on the Empirical Characteristic Function when Parameters must be Estimated , 1981 .
[25] Peter Schmidt,et al. An Improved Version of the Quandt-Ramsey MGE Estimator for Mixtures of Normal Distributions and Switching Regressions , 1982 .
[26] K. Singleton,et al. A test of separate families of distributions based on the empirical moment generating function , 1982 .
[27] T. W. Epps,et al. A test for normality based on the empirical characteristic function , 1983 .
[28] P. Hall,et al. Amendments and Corrections: A Test for Normality Based on the Empirical Characteristic Function , 1983 .
[29] I. A. Koutrouvelis. Distribution-free procedures for location and symmetry inference problems based on the empirical characteristic function , 1985 .
[30] S. Csörgo. Testing for independence by the empirical characteristic function , 1985 .
[31] Sándor Csörgő,et al. Testing for symmetry , 1987 .