The calculation of 17O chemical shielding in transition metal oxo complexes. I. Comparison of DFT and ab initio approaches, and mechanisms of relativity-induced shielding

The performance of different DFT (UDFT-IGLO, UDFT-GIAO, SOS-DFPT-IGLO) and hybrid-DFT approaches, as well as of HF-GIAO and MP2-GIAO methods has been compared for the calculation of 17O chemical shielding in the series of tetrahedral d0 oxo complexes MO4(M=Fe,Ru,Os), MO4−(M=Mn,Tc,Re), and MO42−(M=Cr,Mo,W). While HF-GIAO and MP2-GIAO fail for systems with low-lying excited states (e.g., MnO4−, CrO42−, or MO4), the DFT methods consistently remain remarkably stable. Larger basis sets change the results little, SOS-DFPT correction terms are small, and differences between different local and gradient-corrected exchange-correlation functionals are also minor. The inclusion of CHF-type coupling terms for DFT-HF hybrid functionals leads to a significant overestimate of the paramagnetic contributions, the neglect of these terms to an equally large underestimate. DFT-IGLO results for the 3d complexes show an unexpectedly large dependence on whether the metal semicore shells are localized separately or together with...

[1]  M. Bühl Density functional computations of transition metal NMR chemical shifts: dramatic effects of Hartree-Fock exchange , 1997 .

[2]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[3]  M. Kaupp The Structure of Hexamethyltungsten, W(CH3)6: Distorted Trigonal Prismatic with C3 Symmetry , 1996 .

[4]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[5]  R. Wentworth,et al.  OXYGEN-17 NUCLEAR MAGNETIC RESONANCE SPECTRA OF CERTAIN OXOMOLYBDENUM(VI) COMPLEXES AND THE INFLUENCE OF THE MULTIPLICITY OF THE MOLYBDENUM-OXYGEN BOND , 1979 .

[6]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[7]  R. Harris,et al.  NMR and the periodic table , 1978 .

[8]  Dieter Cremer,et al.  Sum‐over‐states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts , 1996 .

[9]  Peter Politzer,et al.  Modern density functional theory: a tool for chemistry , 1995 .

[10]  Joseph G. Hoffman,et al.  Quantum Theory of Atoms, Molecules and the Solid State: A Tribute to John C. Slater , 1967 .

[11]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[12]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[13]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[14]  John F. Stanton,et al.  Coupled-cluster calculations of nuclear magnetic resonance chemical shifts , 1967 .

[15]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[16]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[17]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[18]  G. Schreckenbach,et al.  Origin of the Hydridic 1H NMR Chemical Shift in Low-Valent Transition-Metal Hydrides , 1996 .

[19]  M. Kaupp Interpretation of 31P‐NMR Coordination Shifts for Phosphane Ligands. Ab Initio ECP/DFT Study of Chemical Shift Tensors in M(CO)5L [M = Cr, Mo, W; L = PH3, P(CH3)3, PF3, PCl3] , 1996 .

[20]  M. Kaupp NMR Chemical‐Shift Anomaly and Bonding in Piano‐Stool Carbonyl and Related Complexes–an Ab Initio ECP/DFT Study , 1996 .

[21]  H. Partridge Near Hartree–Fock quality GTO basis sets for the second‐row atoms , 1987 .

[22]  Nicholas C. Handy,et al.  The density functional calculation of nuclear shielding constants using London atomic orbitals , 1995 .

[23]  Jürgen Gauss,et al.  Rovibrationally averaged nuclear magnetic shielding tensors calculated at the coupled‐cluster level , 1996 .

[24]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[25]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[26]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[27]  T. S. Sorensen,et al.  A Theoretical Computation of the Aromaticity of (Benzene)Cr(CO)3 Compared to Benzene Using the Exaltation of Magnetic Susceptibility Criterion and a Comparison of Calculated and Experimental NMR Chemical Shifts in These Compounds , 1996 .

[28]  L. Ehrenberg,et al.  Studies on the Failure of the First Born Approximation in Electron Diffraction. VI. Ruthenium Tetraoxide. , 1966 .

[29]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[30]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[31]  M. Barfield,et al.  Ab initio orbital studies of molybdenum-95, oxygen-17, and sulfur-33 chemical shielding in transition-metal compounds , 1991 .

[32]  Marvin L. Cohen,et al.  Electronic structure of solids , 1984 .

[33]  John F. Stanton,et al.  Perturbative treatment of triple excitations in coupled‐cluster calculations of nuclear magnetic shielding constants , 1996 .

[34]  E. Baerends,et al.  Analysis of nondynamical correlation in the metal–ligand bond. Pauli repulsion and orbital localization in MnO−4 , 1990 .

[35]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[36]  Y. Ruiz-Morales,et al.  Theoretical Study of 13C and 17O NMR Shielding Tensors in Transition Metal Carbonyls Based on Density Functional Theory and Gauge-Including Atomic Orbitals , 1996 .

[37]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[38]  Gernot Frenking,et al.  A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu , 1993 .

[39]  Dennis R. Salahub,et al.  Calculation of ligand NMR chemical shifts in transition-metal complexes using ab initio effective-core potentials and density functional theory , 1995 .

[40]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[41]  Dennis R. Salahub,et al.  Spin-orbit correction to NMR shielding constants from density functional theory , 1996 .

[42]  Dennis R. Salahub,et al.  NUCLEAR MAGNETIC RESONANCE SHIELDING TENSORS CALCULATED WITH A SUM-OVER-STATES DENSITY FUNCTIONAL PERTURBATION THEORY , 1994 .

[43]  H. Nakatsuji,et al.  Electronic origin of 95Mo NMR chemical shifts in molybdenum complexes. Relationship between excitation energy and chemical shift , 1990 .

[44]  J. Tossell,et al.  Nuclear magnetic shieldings and molecular structure , 1993 .

[45]  A. Jameson,et al.  Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .

[46]  P. Granger,et al.  The first direct detection of 99Ru and 101Ru NMR: Ru relaxation and the Ru–17O coupling constant in RuO4. Comparision with OsO4 , 1981 .

[47]  Dennis R. Salahub,et al.  Scalar Relativistic Effects on 17O NMR Chemical Shifts in Transition-Metal Oxo Complexes. An ab Initio ECP/DFT Study , 1995 .

[48]  M. Bühl SUBSTITUENT EFFECTS ON 103RH NMR CHEMICAL SHIFTS AND REACTIVITIES. A DENSITY FUNCTIONAL STUDY , 1997 .