An algebraic characterization of independence of Petri net processes

The paper is concerned with processes of Petri nets. A partial operation on such processes is defined that allows one to concatenate processes whenever one process is a continuation of another. It is shown that for any Petri net as defined in the paper its set of processes equipped with this operation forms a category in which independence of processes can be characterized in a natural, purely algebraic way.

[1]  C. A. Petri Introduction to General Net Theory , 1979, Advanced Course: Net Theory and Applications.

[2]  Joost Engelfriet,et al.  Branching processes of Petri nets , 1991, Acta Informatica.

[3]  Grzegorz Rozenberg,et al.  Petri Nets: Basic Notions, Structure, Behaviour , 1986, Current Trends in Concurrency.

[4]  Ugo Montanari,et al.  Axiomatizing net computations and processes , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[5]  Józef Winkowski,et al.  Behaviours of Concurrent Systems , 1980, Theor. Comput. Sci..

[6]  Hartmut Ehrig,et al.  Parallelism of Manipulations in Multidimensional Information Structures , 1976, MFCS.

[7]  Antoni W. Mazurkiewicz,et al.  Basic notions of trace theory , 1988, REX Workshop.

[8]  Józef Winkowski An Algebraic Description of System Behaviours , 1982, Theor. Comput. Sci..

[9]  Mogens Nielsen,et al.  Models for Concurrency , 1992 .

[10]  M. W. Shields Concurrent Machines , 1985, Comput. J..

[11]  Grzegorz Rozenberg,et al.  Diamond properties of elementary net systems , 1991, Fundam. Informaticae.

[12]  Raymond R. Devillers,et al.  Sequential and Concurrent Behaviour in Petri Net Theory , 1987, Theor. Comput. Sci..

[13]  Marek Antoni Bednarczyk,et al.  Categories of asynchronous systems , 1987 .

[14]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[15]  C. Petri Kommunikation mit Automaten , 1962 .