An Evaluation of Touch Input at the Edge of a Table

Tables, desks, and counters are often nearby, motivating their use as interactive surfaces. However, they are typically cluttered. As an alternative, we explore touch input along the 'edge' of table-like surfaces. The performance of tapping, crossing, and dragging is tested along the two ridges and front face of a table edge. Results show top ridge movement time is comparable to the top face when tapping or dragging. When crossing, both ridges are at least 11% faster than the top face. Effective width analysis is used to model performance and provide recommended target sizes. Based on observed user behaviour, variations of top and bottom ridge crossing are explored in a second study, and design recommendations with example applications are provided.

[1]  Joseph A. Paradiso,et al.  PrintSense: a versatile sensing technique to support multimodal flexible surface interaction , 2014, CHI.

[2]  Daniel J. Wigdor,et al.  Direct-touch vs. mouse input for tabletop displays , 2007, CHI.

[3]  Daniel J. Wigdor,et al.  Rock & rails: extending multi-touch interactions with shape gestures to enable precise spatial manipulations , 2011, CHI.

[4]  Ravin Balakrishnan,et al.  Sphere: multi-touch interactions on a spherical display , 2008, UIST '08.

[5]  Andrew D. Wilson Using a depth camera as a touch sensor , 2010, ITS '10.

[6]  Pierre David Wellner,et al.  Interacting with paper on the DigitalDesk , 1993, CACM.

[7]  Patrick Baudisch,et al.  Touch input on curved surfaces , 2011, CHI.

[8]  Shumin Zhai,et al.  More than dotting the i's --- foundations for crossing-based interfaces , 2002, CHI.

[9]  Kasper Hornbæk,et al.  An experimental comparison of touch interaction on vertical and horizontal surfaces , 2012, NordiCHI.

[10]  Andreas Butz,et al.  Curve: revisiting the digital desk , 2010, NordiCHI.

[11]  I. Scott MacKenzie,et al.  Copyright 2009 by Human Factors and Ergonomics Society, Inc. All rights reserved. 10.1518/107118109X12524443347715 , 2009 .

[12]  Blair MacIntyre,et al.  RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units , 2014, UIST.

[13]  Darren Leigh,et al.  DiamondTouch: a multi-user touch technology , 2001, UIST '01.

[14]  Stephen A. Brewster,et al.  Messy tabletops: clearing up the occlusion problem , 2013, CHI Extended Abstracts.

[15]  Sy-Yen Kuo,et al.  iCon: utilizing everyday objects as additional, auxiliary and instant tabletop controllers , 2010, CHI.

[16]  Brad A. Myers,et al.  The performance of hand postures in front- and back-of-device interaction for mobile computing , 2008, Int. J. Hum. Comput. Stud..

[17]  Tovi Grossman,et al.  Medusa: a proximity-aware multi-touch tabletop , 2011, UIST.

[18]  Daniel Vogel,et al.  Crossing-based selection with direct touch input , 2014, CHI.

[19]  Jacob O. Wobbrock,et al.  Bonfire: a nomadic system for hybrid laptop-tabletop interaction , 2009, UIST '09.

[20]  Hiroshi Ishii,et al.  ambientROOM: integrating ambient media with architectural space , 1998, CHI Conference Summary.

[21]  Antti Oulasvirta,et al.  Performance and Ergonomics of Touch Surfaces: A Comparative Study using Biomechanical Simulation , 2015, CHI.

[22]  Xiang Cao,et al.  Mouse 2.0: multi-touch meets the mouse , 2009, UIST '09.

[23]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[24]  Ben Shneiderman,et al.  High Precision Touchscreens: Design Strategies and Comparisons with a Mouse , 1991, Int. J. Man Mach. Stud..

[25]  Shumin Zhai,et al.  Beyond Fitts' law: models for trajectory-based HCI tasks , 1997, CHI Extended Abstracts.

[26]  Allen Newell,et al.  The keystroke-level model for user performance time with interactive systems , 1980, CACM.

[27]  Daniel Vogel,et al.  Characterizing Finger Pitch and Roll Orientation During Atomic Touch Actions , 2018, CHI.

[28]  Andreas Butz,et al.  A case study of object and occlusion management on the eLabBench, a mixed physical/digital tabletop , 2013, ITS.

[29]  Carl Gutwin,et al.  Understanding performance in touch selections: Tap, drag and radial pointing drag with finger, stylus and mouse , 2012, Int. J. Hum. Comput. Stud..

[30]  Darren Leigh,et al.  Under the table interaction , 2006, UIST.

[31]  Greg Welch,et al.  The office of the future: a unified approach to image-based modeling and spatially immersive displays , 1998, SIGGRAPH.

[32]  Daniel Vogel,et al.  The Performance and Preference of Different Fingers and Chords for Pointing, Dragging, and Object Transformation , 2016, CHI.

[33]  Joaquim A. Jorge,et al.  Towards accessible touch interfaces , 2010, ASSETS '10.

[34]  Philippe A. Palanque,et al.  Turbulent Touch: Touchscreen Input for Cockpit Flight Displays , 2017, CHI.

[35]  Philippe A. Palanque,et al.  Design and evaluation of braced touch for touchscreen input stabilisation , 2019, Int. J. Hum. Comput. Stud..

[36]  Jerry Alan Fails,et al.  Light widgets: interacting in every-day spaces , 2002, IUI '02.

[37]  Thomas W. Malone,et al.  How do people organize their desks?: Implications for the design of office information systems , 1983, TOIS.

[38]  James D. Hollan,et al.  ObjecTop: occlusion awareness of physical objects on interactive tabletops , 2013, ITS.

[39]  Brad A. Myers,et al.  Text entry from power wheelchairs: edgewrite for joysticks and touchpads , 2004, Assets '04.

[40]  I. Scott MacKenzie,et al.  Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts' law research in HCI , 2004, Int. J. Hum. Comput. Stud..

[41]  Patrick Baudisch,et al.  Lucid touch: a see-through mobile device , 2007, UIST.

[42]  Robert Xiao,et al.  WorldKit: rapid and easy creation of ad-hoc interactive applications on everyday surfaces , 2013, CHI.

[43]  Jan O. Borchers,et al.  BendDesk: dragging across the curve , 2010, ITS '10.

[44]  Andrew Wilson,et al.  MirageTable: freehand interaction on a projected augmented reality tabletop , 2012, CHI.

[45]  Markus H. Gross,et al.  Interactive environment-aware display bubbles , 2006, UIST.

[46]  Patrick Baudisch,et al.  Back-of-device interaction allows creating very small touch devices , 2009, CHI.

[47]  Xiaojun Bi,et al.  Magic desk: bringing multi-touch surfaces into desktop work , 2011, CHI.

[48]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[49]  Brad A. Myers,et al.  EdgeWrite: a stylus-based text entry method designed for high accuracy and stability of motion , 2003, UIST '03.

[50]  Jon Froehlich,et al.  Barrier pointing: using physical edges to assist target acquisition on mobile device touch screens , 2007, Assets '07.