Coupling and Ergodicity of Adaptive MCMC
暂无分享,去创建一个
[1] Gareth O. Roberts,et al. Convergence Properties of Perturbed Markov Chains , 1998, Journal of Applied Probability.
[2] S. Meyn,et al. Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .
[3] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[4] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[5] E. MOULINESE. COMPUTABLE BOUNDS FOR SUBGEOMETRICAL AND GEOMETRICAL ERGODICITY , 2000 .
[6] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[7] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[8] J. Rosenthal. A First Look at Rigorous Probability Theory , 2000 .
[9] C. Robert,et al. Controlled MCMC for Optimal Sampling , 2001 .
[10] Gareth O. Roberts,et al. One-shot coupling for certain stochastic recursive sequences , 2002 .
[11] Olle Häggström,et al. A note on disagreement percolation , 2001, Random Struct. Algorithms.
[12] P. Baxendale. Renewal theory and computable convergence rates for geometrically ergodic Markov chains , 2005, math/0503515.
[13] J. Rosenthal. QUANTITATIVE CONVERGENCE RATES OF MARKOV CHAINS: A SIMPLE ACCOUNT , 2002 .
[14] J. Rosenthal,et al. On adaptive Markov chain Monte Carlo algorithms , 2005 .
[15] R. Tweedie,et al. Bounds on regeneration times and convergence rates for Markov chains fn1 fn1 Work supported in part , 1999 .
[16] Bert Fristedt,et al. A modern approach to probability theory , 1996 .
[17] J. Kadane,et al. Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .
[18] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[19] G. Roberts,et al. Polynomial convergence rates of Markov chains. , 2002 .
[20] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[21] É. Moulines,et al. Polynomial ergodicity of Markov transition kernels , 2003 .
[22] S. Rosenthal,et al. Faithful couplings of Markov chains : now equals forever , 1995 .
[23] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[24] H. Robbins. A Stochastic Approximation Method , 1951 .
[25] J. Rosenthal. Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .
[26] Jeffrey S. Rosenthal,et al. Faithful Couplings of Markov Chains , 1997 .