Coupling and Ergodicity of Adaptive MCMC

We consider basic ergodicity properties of adaptive MCMC algorithms under minimal assumptions, using coupling constructions. We prove convergence in distribution and a weak law of large numbers. We also give counter-examples to demonstrate that the assumptions we make are not redundant.

[1]  Gareth O. Roberts,et al.  Convergence Properties of Perturbed Markov Chains , 1998, Journal of Applied Probability.

[2]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[3]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[4]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[5]  E. MOULINESE COMPUTABLE BOUNDS FOR SUBGEOMETRICAL AND GEOMETRICAL ERGODICITY , 2000 .

[6]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[7]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[8]  J. Rosenthal A First Look at Rigorous Probability Theory , 2000 .

[9]  C. Robert,et al.  Controlled MCMC for Optimal Sampling , 2001 .

[10]  Gareth O. Roberts,et al.  One-shot coupling for certain stochastic recursive sequences , 2002 .

[11]  Olle Häggström,et al.  A note on disagreement percolation , 2001, Random Struct. Algorithms.

[12]  P. Baxendale Renewal theory and computable convergence rates for geometrically ergodic Markov chains , 2005, math/0503515.

[13]  J. Rosenthal QUANTITATIVE CONVERGENCE RATES OF MARKOV CHAINS: A SIMPLE ACCOUNT , 2002 .

[14]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[15]  R. Tweedie,et al.  Bounds on regeneration times and convergence rates for Markov chains fn1 fn1 Work supported in part , 1999 .

[16]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[17]  J. Kadane,et al.  Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive Schemes , 2005 .

[18]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[19]  G. Roberts,et al.  Polynomial convergence rates of Markov chains. , 2002 .

[20]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[21]  É. Moulines,et al.  Polynomial ergodicity of Markov transition kernels , 2003 .

[22]  S. Rosenthal,et al.  Faithful couplings of Markov chains : now equals forever , 1995 .

[23]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[24]  H. Robbins A Stochastic Approximation Method , 1951 .

[25]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[26]  Jeffrey S. Rosenthal,et al.  Faithful Couplings of Markov Chains , 1997 .