Low-dimensional lattices. IV. The mass formula

The mass formula expresses the sum of the reciprocals of the group orders of the lattices in a genus in terms of the properties of any of them. We restate the formula so as to make it easier to compute. In particular we give a simple and reliable way to evaluate the 2-adic contribution. Our version, unlike earlier ones, is visibly invariant under scale changes and dualizing. We use the formula to check the enumeration of lattices of determinant d≼ 25 given in the first paper in this series. We also give tables of the ‘standard mass’, the L-series Σ(n/m)m-s (m odd), and genera of lattices of determinant d ≼ 25.

[1]  Gordon Pall The arithmetical invariants of quadratic forms , 1945 .

[2]  T. Apostol Introduction to analytic number theory , 1976 .

[3]  F. Grosshans SEMI-SIMPLE ALGEBRAIC GROUPS DEFINED OVER A REAL CLOSED FIELD. , 1972 .

[4]  G. L. Watson The 2-adic density of a quadratic form , 1976 .

[5]  W. Magnus Über die Anzahl der in einem Geschlecht enthaltenen Klassen von positiv-definiten quadratischen Formen , 1937 .

[6]  Neil J. A. Sloane,et al.  Low-dimensional lattices. I. Quadratic forms of small determinant , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  C. Siegel,et al.  Uber Die Analytische Theorie Der Quadratischen Formen III , 1935 .

[8]  L. Carlitz,et al.  Representations by quadratic forms in a finite field , 1954 .

[9]  Jean-Pierre Serre Cours d'arithmétique , 1971 .

[10]  M. Kneser,et al.  Quadratische Formen und Verschlingungsinvarianten von Knoten , 1953 .

[11]  Neil J. A. Sloane Self-dual codes and lattices , 1979 .

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  H. Hardy.G. Some Famous Problems Of The Theory Of Numbers And In Particular Warings Problem , 1920 .

[14]  James E. Goehring,et al.  THE ENGLISH TRANSLATION , 1986 .

[15]  Chao Ko On the positive definite quadratic forms with determinant unity , 1939 .

[16]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[17]  Leonard Carlitz,et al.  Representations by Hermitian forms in a finite field , 1955 .

[18]  Chao Ko Determination of the Class Number of Positive Quadratic Forms in Nine Variables with Determinant Unity , 1938 .

[19]  Neil J. A. Sloane,et al.  Low-dimensional lattices. II. Subgroups of GL(n, ℤ) , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  C. Chevalley,et al.  Sur certains groupes simples , 1955 .

[21]  F. Blij On the Theory of Quadratic Forms , 1949 .

[22]  N. J. A. Sloane,et al.  The Unimodular Lattices of Dimension up to 23 and the Minkowski-Siegel Mass Constants , 1982, Eur. J. Comb..

[23]  Chih-Han Sah,et al.  Symmetric bilinear forms and quadratic forms , 1972 .

[24]  N. Sloane,et al.  Low-dimensional lattices. III. Perfect forms , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  N. Sloane,et al.  On the enumeration of lattices of determinant one , 1982 .

[26]  Horst Pfeuffer Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern , 1971 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  H. Smith On the orders and genera of quadratic forms containing more than three indeterminates , 2022, Proceedings of the Royal Society of London.

[29]  J. Dieudonné,et al.  La géométrie des groupes classiques , 1963 .

[30]  Gesammelte Abhandlungen , 1906, Nature.

[31]  B. W. Jones,et al.  A canonical quadratic form for the ring of 2-adic integers , 1944 .

[32]  A. Weil Sur la théorie des formes quadratiques , 1979 .

[33]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[34]  J. Cassels,et al.  Rational Quadratic Forms , 1978 .