Low-dimensional lattices. IV. The mass formula
暂无分享,去创建一个
[1] Gordon Pall. The arithmetical invariants of quadratic forms , 1945 .
[2] T. Apostol. Introduction to analytic number theory , 1976 .
[3] F. Grosshans. SEMI-SIMPLE ALGEBRAIC GROUPS DEFINED OVER A REAL CLOSED FIELD. , 1972 .
[4] G. L. Watson. The 2-adic density of a quadratic form , 1976 .
[5] W. Magnus. Über die Anzahl der in einem Geschlecht enthaltenen Klassen von positiv-definiten quadratischen Formen , 1937 .
[6] Neil J. A. Sloane,et al. Low-dimensional lattices. I. Quadratic forms of small determinant , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[7] C. Siegel,et al. Uber Die Analytische Theorie Der Quadratischen Formen III , 1935 .
[8] L. Carlitz,et al. Representations by quadratic forms in a finite field , 1954 .
[9] Jean-Pierre Serre. Cours d'arithmétique , 1971 .
[10] M. Kneser,et al. Quadratische Formen und Verschlingungsinvarianten von Knoten , 1953 .
[11] Neil J. A. Sloane. Self-dual codes and lattices , 1979 .
[12] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[13] H. Hardy.G.. Some Famous Problems Of The Theory Of Numbers And In Particular Warings Problem , 1920 .
[14] James E. Goehring,et al. THE ENGLISH TRANSLATION , 1986 .
[15] Chao Ko. On the positive definite quadratic forms with determinant unity , 1939 .
[16] N. J. A. Sloane,et al. Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.
[17] Leonard Carlitz,et al. Representations by Hermitian forms in a finite field , 1955 .
[18] Chao Ko. Determination of the Class Number of Positive Quadratic Forms in Nine Variables with Determinant Unity , 1938 .
[19] Neil J. A. Sloane,et al. Low-dimensional lattices. II. Subgroups of GL(n, ℤ) , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] C. Chevalley,et al. Sur certains groupes simples , 1955 .
[21] F. Blij. On the Theory of Quadratic Forms , 1949 .
[22] N. J. A. Sloane,et al. The Unimodular Lattices of Dimension up to 23 and the Minkowski-Siegel Mass Constants , 1982, Eur. J. Comb..
[23] Chih-Han Sah,et al. Symmetric bilinear forms and quadratic forms , 1972 .
[24] N. Sloane,et al. Low-dimensional lattices. III. Perfect forms , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[25] N. Sloane,et al. On the enumeration of lattices of determinant one , 1982 .
[26] Horst Pfeuffer. Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern , 1971 .
[27] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[28] H. Smith. On the orders and genera of quadratic forms containing more than three indeterminates , 2022, Proceedings of the Royal Society of London.
[29] J. Dieudonné,et al. La géométrie des groupes classiques , 1963 .
[30] Gesammelte Abhandlungen , 1906, Nature.
[31] B. W. Jones,et al. A canonical quadratic form for the ring of 2-adic integers , 1944 .
[32] A. Weil. Sur la théorie des formes quadratiques , 1979 .
[33] L. Dickson. History of the Theory of Numbers , 1924, Nature.
[34] J. Cassels,et al. Rational Quadratic Forms , 1978 .