Pore-forming toxins: ancient, but never really out of fashion

Pore-forming toxins (PFTs) are virulence factors produced by many pathogenic bacteria and have long fascinated structural biologists, microbiologists and immunologists. Interestingly, pore-forming proteins with remarkably similar structures to PFTs are found in vertebrates and constitute part of their immune system. Recently, structural studies of several PFTs have provided important mechanistic insights into the metamorphosis of PFTs from soluble inactive monomers to cytolytic transmembrane assemblies. In this Review, we discuss the diverse pore architectures and membrane insertion mechanisms that have been revealed by these studies, and we consider how these features contribute to binding specificity for different membrane targets. Finally, we explore the potential of these structural insights to enable the development of novel therapeutic strategies that would prevent both the establishment of bacterial resistance and an excessive immune response.

[1]  A. Mitra,et al.  Oligomeric Structure of Colicin Ia Channel in Lipid Bilayer Membranes* , 2009, The Journal of Biological Chemistry.

[2]  Piet Gros,et al.  Structure of C8α-MACPF Reveals Mechanism of Membrane Attack in Complement Immune Defense , 2007, Science.

[3]  Q. Gao,et al.  βγ-CAT, a non-lens betagamma-crystallin and trefoil factor complex, induces calcium-dependent platelet apoptosis , 2011, Thrombosis and Haemostasis.

[4]  P. Sathyanarayana,et al.  Lysis dynamics and membrane oligomerization pathways for Cytolysin A (ClyA) pore-forming toxin , 2014 .

[5]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[6]  James C. Whisstock,et al.  A New Model for Pore Formation by Cholesterol-Dependent Cytolysins , 2014, PLoS Comput. Biol..

[7]  I. Siden-Kiamos,et al.  A perforin‐like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes , 2013, Cellular microbiology.

[8]  V. Torres,et al.  Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. , 2014, Trends in microbiology.

[9]  D. Moss,et al.  Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. , 2011, Journal of molecular biology.

[10]  H. Steinhoff,et al.  Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. , 2013, Journal of molecular biology.

[11]  R. Tweten,et al.  Disulfide-Bond Scanning Reveals Assembly State and β-Strand Tilt Angle of PFO β-Barrel , 2013, Nature chemical biology.

[12]  J. Vivekananda,et al.  DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin. , 2014, Biochemical and biophysical research communications.

[13]  P. Kienker,et al.  Transmembrane insertion of the Colicin Ia hydrophobic hairpin , 1997, The Journal of Membrane Biology.

[14]  J. Mege,et al.  Escherichia coli α-Hemolysin Counteracts the Anti-Virulence Innate Immune Response Triggered by the Rho GTPase Activating Toxin CNF1 during Bacteremia , 2015, PLoS pathogens.

[15]  Christopher L. Johnson,et al.  Interfacial interactions of pore-forming colicins. , 2010, Advances in experimental medicine and biology.

[16]  A. Rajpal,et al.  Mechanism of action and in vivo efficacy of a human-derived antibody against Staphylococcus aureus α-hemolysin. , 2013, Journal of molecular biology.

[17]  Ashley M Buckle,et al.  A Common Fold Mediates Vertebrate Defense and Bacterial Attack , 2007, Science.

[18]  S. Goda,et al.  Hemolytic Lectin CEL-III Heptamerizes via a Large Structural Transition from α-Helices to a β-Barrel during the Transmembrane Pore Formation Process* , 2014, The Journal of Biological Chemistry.

[19]  D. Foell,et al.  Staphylococcus aureus Panton‐Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome , 2012, Journal of leukocyte biology.

[20]  B. Bishop,et al.  Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis* , 2009, Journal of Biological Chemistry.

[21]  V. Torres,et al.  The Bicomponent Pore-Forming Leucocidins of Staphylococcus aureus , 2014, Microbiology and Molecular Reviews.

[22]  J. Tschopp,et al.  Caspase-1 Activation of Lipid Metabolic Pathways in Response to Bacterial Pore-Forming Toxins Promotes Cell Survival , 2006, Cell.

[23]  Stefan Raunser,et al.  A syringe-like injection mechanism in Photorhabdus luminescens toxins , 2013, Nature.

[24]  K. Ginalski,et al.  Extending the Aerolysin Family: From Bacteria to Vertebrates , 2011, PloS one.

[25]  Zhifeng Shao,et al.  Vertical collapse of a cytolysin prepore moves its transmembrane β‐hairpins to the membrane , 2004, The EMBO journal.

[26]  R. Tweten,et al.  Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface , 2010, Proceedings of the National Academy of Sciences.

[27]  D. Tsernoglou,et al.  Structure of the membrane-pore-forming fragment of colicin A , 1989, Nature.

[28]  G. Anderluh,et al.  Molecular mechanism of pore formation by actinoporins Katarina , 2022 .

[29]  Yu Zhang,et al.  Oroxylin A Inhibits Hemolysis via Hindering the Self-Assembly of α-Hemolysin Heptameric Transmembrane Pore , 2013, PLoS Comput. Biol..

[30]  C. Bräuchle,et al.  Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites , 2015, PLoS pathogens.

[31]  E. García Véscovi,et al.  Serratia marcescens ShlA Pore-Forming Toxin Is Responsible for Early Induction of Autophagy in Host Cells and Is Transcriptionally Regulated by RcsB , 2014, Infection and Immunity.

[32]  R. Norton,et al.  Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. , 2002, Journal of molecular biology.

[33]  James C. Whisstock,et al.  Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin , 2015, PLoS biology.

[34]  J. Kowal,et al.  In situ structural analysis of the Yersinia enterocolitica injectisome , 2013, eLife.

[35]  P. Artymiuk,et al.  Structure of the NheA Component of the Nhe Toxin from Bacillus cereus: Implications for Function , 2013, PloS one.

[36]  I. Fichtner,et al.  Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors , 2011, Gene Therapy.

[37]  Xuemei Li,et al.  Crystal structure of cytotoxin protein suilysin from Streptococcus suis , 2010, Protein & Cell.

[38]  F. G. van der Goot,et al.  Pore‐forming toxins induce multiple cellular responses promoting survival , 2011, Cellular microbiology.

[39]  Michael Grabe,et al.  Antibacterial membrane attack by a pore-forming intestinal C-type lectin , 2013, Nature.

[40]  K. Aktories,et al.  Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  L. Vuillard,et al.  Membrane Interaction of Escherichia coliHemolysin: Flotation and Insertion-Dependent Labeling by Phospholipid Vesicles , 2001, Journal of bacteriology.

[42]  Denis Gris,et al.  Staphylococcus aureus α-Hemolysin Activates the NLRP3-Inflammasome in Human and Mouse Monocytic Cells , 2009, PloS one.

[43]  Robert J. Moore,et al.  NetB, a Pore-Forming Toxin from Necrotic Enteritis Strains of Clostridium perfringens , 2010, Toxins.

[44]  I. Goldstein,et al.  Structural Analysis of the Laetiporus sulphureus Hemolytic Pore-forming Lectin in Complex with Sugars* , 2005, Journal of Biological Chemistry.

[45]  C. Day,et al.  The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity , 2014, Proceedings of the National Academy of Sciences.

[46]  B. Bonev,et al.  The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein , 2014, Molecular microbiology.

[47]  R. Epand,et al.  The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. , 2013, Biochimica et biophysica acta.

[48]  M. Parker,et al.  An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin , 2015, Proceedings of the National Academy of Sciences.

[49]  J. Vázquez-Boland,et al.  The Comprehensive Sourcebook of Bacterial Protein Toxins , 2006 .

[50]  C. Naylor,et al.  Structural Insights into Clostridium perfringens Delta Toxin Pore Formation , 2013, PloS one.

[51]  F. G. van der Goot,et al.  Requirement of N‐glycan on GPI‐anchored proteins for efficient binding of aerolysin but not Clostridium septicum α‐toxin , 2002, The EMBO journal.

[52]  M. B. Mestre,et al.  Staphylococcus aureus promotes autophagy by decreasing intracellular cAMP levels , 2012, Autophagy.

[53]  L. Abrami,et al.  Landing on lipid rafts. , 1999, Trends in cell biology.

[54]  P. Sims,et al.  Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin , 2004, Nature Structural &Molecular Biology.

[55]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[56]  C. Levinthal,et al.  Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants , 1993, Science.

[57]  J. Piontek,et al.  Mechanism of Clostridium perfringens Enterotoxin Interaction with Claudin-3/-4 Protein Suggests Structural Modifications of the Toxin to Target Specific Claudins* , 2011, The Journal of Biological Chemistry.

[58]  A. Shorr,et al.  Bacteremia in Staphylococcus aureus pneumonia: outcomes and epidemiology. , 2011, Journal of critical care.

[59]  D. Turk,et al.  Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. , 2001, Structure.

[60]  M. Parker,et al.  Structure of the lectin regulatory domain of the cholesterol-dependent cytolysin lectinolysin reveals the basis for its lewis antigen specificity. , 2012, Structure.

[61]  T. Iida,et al.  Vibrio parahaemolyticus Effector Proteins Suppress Inflammasome Activation by Interfering with Host Autophagy Signaling , 2013, PLoS pathogens.

[62]  E. Gouaux Channel-forming toxins: tales of transformation. , 1997, Current opinion in structural biology.

[63]  R. Tweten,et al.  Membrane assembly of the cholesterol-dependent cytolysin pore complex. , 2012, Biochimica et biophysica acta.

[64]  R. Tweten,et al.  Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit β-strand alignment , 2004, Nature Structural &Molecular Biology.

[65]  D. Moss,et al.  Molecular Architecture and Functional Analysis of NetB, a Pore-forming Toxin from Clostridium perfringens* , 2012, The Journal of Biological Chemistry.

[66]  R. Dietrich,et al.  Bacillus cereus enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. , 2014, Toxicon : official journal of the International Society on Toxinology.

[67]  M. Parker,et al.  Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study. , 1991, European journal of biochemistry.

[68]  S. Howard,et al.  Activation of the hole-forming toxin aerolysin by extracellular processing , 1985, Journal of bacteriology.

[69]  M. Ruiz-Argüello,et al.  Lipid Phase Coexistence Favors Membrane Insertion of Equinatoxin-II, a Pore-forming Toxin from Actinia equina* , 2004, Journal of Biological Chemistry.

[70]  I. Linhartova,et al.  RTX proteins: a highly diverse family secreted by a common mechanism , 2010, FEMS microbiology reviews.

[71]  M. Parker,et al.  Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. , 2014, Journal of molecular biology.

[72]  A. R. Merrill,et al.  Adventures in Membrane Protein Topology , 1999, The Journal of Biological Chemistry.

[73]  E. Gouaux,et al.  Crystal structure of the Vibrio cholerae cytolysin (VCC) pro-toxin and its assembly into a heptameric transmembrane pore. , 2005, Journal of molecular biology.

[74]  J. Lakey,et al.  All in the family: the toxic activity of pore-forming colicins. , 1994, Toxicology.

[75]  F. Vandenesch,et al.  The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. , 2013, Cell host & microbe.

[76]  R. Tweten,et al.  Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins , 2005, Infection and Immunity.

[77]  P. Cossart,et al.  Histone modifications induced by a family of bacterial toxins , 2007, Proceedings of the National Academy of Sciences.

[78]  S. Burley,et al.  X‐ray crystal structure of the B component of Hemolysin BL from Bacillus cereus , 2008, Proteins.

[79]  C. Chávez-Olórtegui,et al.  Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known. , 2014, Anaerobe.

[80]  I. Tanaka,et al.  Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components , 2011, Proceedings of the National Academy of Sciences.

[81]  Marcus Mueller,et al.  The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism , 2009, Nature.

[82]  Robert J Collier,et al.  Atomic structure of anthrax protective antigen pore elucidates toxin translocation , 2015 .

[83]  Michael W Parker,et al.  Structure of a Cholesterol-Binding, Thiol-Activated Cytolysin and a Model of Its Membrane Form , 1997, Cell.

[84]  A. Prince,et al.  Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes. , 2012, The Journal of infectious diseases.

[85]  F. G. van der Goot,et al.  Pathogenic pore-forming proteins: function and host response. , 2012, Cell Host and Microbe.

[86]  M. dal Peraro,et al.  New strategies for integrative dynamic modeling of macromolecular assembly. , 2014, Advances in protein chemistry and structural biology.

[87]  D. Myszka,et al.  CCR5 is a receptor for Staphylococcus aureus leukotoxin ED , 2012, Nature.

[88]  Christina M Chisholm,et al.  A Non-classical Assembly Pathway of Escherichia coli Pore-forming Toxin Cytolysin A , 2013, The Journal of Biological Chemistry.

[89]  K. Chattopadhyay,et al.  Pre-pore oligomer formation by Vibrio cholerae cytolysin: insights from a truncated variant lacking the pore-forming pre-stem loop. , 2014, Biochemical and biophysical research communications.

[90]  Bryan A. Millis,et al.  Caveolae internalization repairs wounded cells and muscle fibers , 2013, eLife.

[91]  I. Tanaka,et al.  Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins , 2014, Nature Communications.

[92]  G. Anderluh,et al.  Photobleaching Reveals Heterogeneous Stoichiometry for Equinatoxin II Oligomers , 2014, Chembiochem : a European journal of chemical biology.

[93]  Q. Gao,et al.  Host-derived, pore-forming toxin–like protein and trefoil factor complex protects the host against microbial infection , 2014, Proceedings of the National Academy of Sciences.

[94]  B. Lemaître,et al.  X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form* , 2015, The Journal of Biological Chemistry.

[95]  J. Cole,et al.  Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family. , 2014, Journal of molecular biology.

[96]  C. Lesieur,et al.  Increased Stability upon Heptamerization of the Pore-forming Toxin Aerolysin* , 1999, The Journal of Biological Chemistry.

[97]  D. Sher,et al.  Hydralysins, a New Category of β-Pore-forming Toxins in Cnidaria* , 2005, Journal of Biological Chemistry.

[98]  Helen R. Saibil,et al.  Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin , 2005, Cell.

[99]  G. Anderluh,et al.  Membrane Damage by an α-Helical Pore-forming Protein, Equinatoxin II, Proceeds through a Succession of Ordered Steps* , 2013, The Journal of Biological Chemistry.

[100]  Yu Zhang,et al.  Molecular Modeling Reveals the Novel Inhibition Mechanism and Binding Mode of Three Natural Compounds to Staphylococcal α-Hemolysin , 2013, PloS one.

[101]  Scott D Emr,et al.  The ESCRT pathway. , 2011, Developmental cell.

[102]  Holger Scheib,et al.  A rivet model for channel formation by aerolysin‐like pore‐forming toxins , 2006, The EMBO journal.

[103]  Frank Alber,et al.  Conformational States of Macromolecular Assemblies Explored by Integrative Structure Calculation , 2013, Structure.

[104]  A. Yoon,et al.  Suicide cancer gene therapy using pore-forming toxin, streptolysin O , 2006, Molecular Cancer Therapeutics.

[105]  A. García-Sáez,et al.  Permeabilization of the outer mitochondrial membrane by Bcl-2 proteins. , 2010, Advances in experimental medicine and biology.

[106]  C. Day,et al.  The Staphylococcal Toxins γ-Hemolysin AB and CB Differentially Target Phagocytes by Employing Specific Chemokine Receptors , 2014, Nature Communications.

[107]  Simon C Watkins,et al.  Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane , 2011, Journal of Cell Science.

[108]  Giorgio E Tamò,et al.  The importance of dynamics in integrative modeling of supramolecular assemblies. , 2015, Current opinion in structural biology.

[109]  J. Allienne,et al.  Biomphalysin, a New β Pore-forming Toxin Involved in Biomphalaria glabrata Immune Defense against Schistosoma mansoni , 2013, PLoS pathogens.

[110]  Kenji Yokota,et al.  Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel , 1999, Nature Structural Biology.

[111]  B. Lemaître,et al.  Monalysin, a Novel ß-Pore-Forming Toxin from the Drosophila Pathogen Pseudomonas entomophila, Contributes to Host Intestinal Damage and Lethality , 2011, PLoS pathogens.

[112]  D. Moss,et al.  Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2. , 2014, Journal of molecular biology.

[113]  T. J. Stillman,et al.  E. coli Hemolysin E (HlyE, ClyA, SheA) X-Ray Crystal Structure of the Toxin and Observation of Membrane Pores by Electron Microscopy , 2000, Cell.

[114]  Keiko Kobayashi,et al.  The p38 MAPK and JNK Pathways Protect Host Cells against Clostridium perfringens Beta-Toxin , 2013, Infection and Immunity.

[115]  D. Moss,et al.  Identification of a Key Residue for Oligomerisation and Pore-Formation of Clostridium perfringens NetB , 2014, Toxins.

[116]  E. Volpi,et al.  Structures of Lysenin Reveal a Shared Evolutionary Origin for Pore-Forming Proteins And Its Mode of Sphingomyelin Recognition , 2012, Structure.

[117]  J. Rossjohn,et al.  Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. , 1998, Biochemistry.

[118]  D. Tsernoglou,et al.  Insights into membrane insertion based on studies of colicins. , 1990, Trends in biochemical sciences.

[119]  V. Carruthers,et al.  New roles for perforins and proteases in apicomplexan egress , 2009, Cellular microbiology.

[120]  D. Tsernoglou,et al.  Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states , 1994, Nature.

[121]  M. S. McClain,et al.  Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1. , 2012, Biochemistry.

[122]  E. Williams,et al.  Anthrax Toxin Receptor Drives Protective Antigen Oligomerization and Stabilizes the Heptameric and Octameric Oligomer by a Similar Mechanism , 2010, PloS one.

[123]  J. Bubeck Wardenburg,et al.  Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue , 2013, Toxins.

[124]  M. Valle,et al.  Structural insights into the oligomerization and architecture of eukaryotic membrane pore-forming toxins. , 2011, Structure.

[125]  R. Aroian,et al.  Role of Pore-Forming Toxins in Bacterial Infectious Diseases , 2013, Microbiology and Molecular Reviews.

[126]  M. Popoff Clostridial pore-forming toxins: powerful virulence factors. , 2014, Anaerobe.

[127]  L. Abrami,et al.  Adventures of a pore-forming toxin at the target cell surface. , 2000, Trends in microbiology.

[128]  Juan A Hermoso,et al.  Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. , 2003, Structure.

[129]  E. London,et al.  Altering Hydrophobic Sequence Lengths Shows That Hydrophobic Mismatch Controls Affinity for Ordered Lipid Domains (Rafts) in the Multitransmembrane Strand Protein Perfringolysin O* , 2012, The Journal of Biological Chemistry.

[130]  F. G. van der Goot,et al.  Dual Chaperone Role of the C-Terminal Propeptide in Folding and Oligomerization of the Pore-Forming Toxin Aerolysin , 2011, PLoS pathogens.

[131]  M. B. Mestre,et al.  Autophagy and toxins: a matter of life or death. , 2012, Current molecular medicine.

[132]  D. Moss,et al.  Clostridium perfringens epsilon toxin H149A mutant as a platform for receptor binding studies , 2013, Protein science : a publication of the Protein Society.

[133]  K. Harata,et al.  Crystallization of parasporin-2, a Bacillus thuringiensis crystal protein with selective cytocidal activity against human cells. , 2004, Acta crystallographica. Section D, Biological crystallography.

[134]  E. Kudryashova,et al.  Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane , 2014, Molecular microbiology.

[135]  A. Finkelstein,et al.  Identification of a translocated protein segment in a voltage-dependent channel , 1994, Nature.

[136]  I. Inoshima,et al.  A Staphylococcus aureus Pore-Forming Toxin Subverts the Activity of ADAM10 to Cause Lethal Infection , 2011, Nature Medicine.

[137]  H. Bayley,et al.  Nucleobase Recognition by Truncated α-Hemolysin Pores. , 2015, ACS nano.

[138]  R. Tweten,et al.  The Cholesterol-Dependent Cytolysin Signature Motif: A Critical Element in the Allosteric Pathway that Couples Membrane Binding to Pore Assembly , 2012, PLoS pathogens.

[139]  T. Mitchell,et al.  Novel mucosal vaccines generated by genetic conjugation of heterologous proteins to pneumolysin (PLY) from Streptococcus pneumoniae. , 2010, Vaccine.

[140]  D. Lacy,et al.  Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. , 2013, Cell host & microbe.

[141]  Zhongwu Guo,et al.  Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin‐type of pore‐forming bacterial toxins , 2010, Medicinal research reviews.

[142]  J. Rossjohn,et al.  The Identification and Structure of the Membrane-spanning Domain of the Clostridium septicum Alpha Toxin* , 2004, Journal of Biological Chemistry.

[143]  Rich Olson,et al.  Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins , 2011, Proceedings of the National Academy of Sciences.

[144]  F. Perez,et al.  ESCRT Machinery Is Required for Plasma Membrane Repair , 2014, Science.

[145]  T. Kirchhausen,et al.  An emergency response team for membrane repair , 2005, Nature Reviews Molecular Cell Biology.

[146]  H. Nagamune,et al.  The diversity of receptor recognition in cholesterol‐dependent cytolysins , 2014, Microbiology and immunology.

[147]  B. Kagan,et al.  Activation and mechanism of Clostridium septicum alpha toxin , 1993, Molecular microbiology.

[148]  Y. Xiang,et al.  Comprehensive Transcriptome Profiling and Functional Analysis of the Frog (Bombina maxima) Immune System , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[149]  L. Comstock,et al.  An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins , 2014, Molecular microbiology.

[150]  K. Tsumoto,et al.  Structural basis for self-assembly of a cytolytic pore lined by protein and lipid , 2015, Nature Communications.

[151]  L. Abrami,et al.  Plasma Membrane Microdomains Act as Concentration Platforms to Facilitate Intoxication by Aerolysin , 1999, The Journal of cell biology.

[152]  Ronnie H. Fang,et al.  Nanoparticle-detained toxins for safe and effective vaccination , 2013, Nature nanotechnology.

[153]  S. Wai,et al.  Outer Membrane Vesicles Mediate Transport of Biologically Active Vibrio cholerae Cytolysin (VCC) from V. cholerae Strains , 2014, PloS one.

[154]  Henning Stahlberg,et al.  Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. , 2013, Nature chemical biology.

[155]  Ziniu Yu,et al.  Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins , 2014, Toxins.

[156]  J. Plitzko,et al.  Incomplete pneumolysin oligomers form membrane pores , 2014, Open Biology.

[157]  J. Lieberman,et al.  Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. , 2005, Immunity.

[158]  Gerald J. Wyckoff,et al.  The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. , 2012, Journal of molecular biology.

[159]  J. Rossjohn,et al.  The Mechanism of Membrane Insertion for a Cholesterol-Dependent Cytolysin A Novel Paradigm for Pore-Forming Toxins , 1999, Cell.

[160]  J. B. Wardenburg,et al.  Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin–mediated cellular injury , 2010, Proceedings of the National Academy of Sciences.

[161]  C. Lesieur,et al.  Membrane insertion: The strategies of toxins (review). , 1997, Molecular membrane biology.

[162]  Colin Kleanthous,et al.  Colicin Biology , 2007, Microbiology and Molecular Biology Reviews.

[163]  P. Morin,et al.  Claudin-6: a novel receptor for CPE-mediated cytotoxicity in ovarian cancer , 2012, Oncogenesis.

[164]  D. Diep,et al.  Glycosylphosphatidylinositol Anchors of Membrane Glycoproteins Are Binding Determinants for the Channel-forming Toxin Aerolysin* , 1998, The Journal of Biological Chemistry.

[165]  P. Artymiuk,et al.  Hemolysin E (HlyE, ClyA, SheA) and related toxins. , 2010, Advances in experimental medicine and biology.

[166]  R. Smith,et al.  Structural Basis for Recognition of the Pore-Forming Toxin Intermedilysin by Human Complement Receptor CD59 , 2013, Cell reports.

[167]  J. Whisstock,et al.  The structural basis for membrane binding and pore formation by lymphocyte perforin , 2010, Nature.

[168]  D. Moss,et al.  Clostridium perfringens ε-toxin shows structural similarity to the pore-forming toxin aerolysin , 2004, Nature Structural &Molecular Biology.

[169]  G. Anderluh,et al.  The sensing of membrane microdomains based on pore-forming toxins. , 2013, Current medicinal chemistry.

[170]  Herbert L. Axelrod,et al.  Structural Biology and Crystallization Communications Structure of a Membrane-attack Complex/perforin (macpf) Family Protein from the Human Gut Symbiont Bacteroides Thetaiotaomicron , 2022 .

[171]  H. Steinhoff,et al.  In vivo EPR on spin labeled colicin A reveals an oligomeric assembly of the pore-forming domain in E. coli membranes. , 2015, Physical chemistry chemical physics : PCCP.

[172]  K. Chattopadhyay,et al.  Functional Mapping of the Lectin Activity Site on the β-Prism Domain of Vibrio cholerae Cytolysin , 2012, The Journal of Biological Chemistry.

[173]  N. Andrews,et al.  Two-way traffic on the road to plasma membrane repair. , 2008, Trends in cell biology.

[174]  G. Dewson,et al.  Molecular biology of Bax and Bak activation and action. , 2011, Biochimica et biophysica acta.

[175]  Jochen W. Klingelhoefer,et al.  Functional truncated membrane pores , 2014, Proceedings of the National Academy of Sciences.

[176]  S. Schendel,et al.  Solid‐state NMR studies of the membrane‐bound closed state of the colicin E1 channel domain in lipid bilayers , 1998, Protein science : a publication of the Protein Society.

[177]  H. Bayley,et al.  The leukocidin pore: Evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis , 2005, Protein science : a publication of the Protein Society.

[178]  Maya Topf,et al.  Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin , 2014, eLife.

[179]  D. Lacy,et al.  A Phenylalanine Clamp Catalyzes Protein Translocation Through the Anthrax Toxin Pore , 2005, Science.

[180]  D. Tsernoglou,et al.  Refined structure of the pore-forming domain of colicin A at 2.4 A resolution. , 1992, Journal of molecular biology.

[181]  Haruki Nakamura,et al.  Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. , 2015, Structure.

[182]  Katherine A. Kantardjieff,et al.  The crystal structure of diphtheria toxin , 1992, Nature.

[183]  M. dal Peraro,et al.  Macromolecular symmetric assembly prediction using swarm intelligence dynamic modeling. , 2013, Structure.

[184]  S. De,et al.  Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. , 2013, Journal of molecular biology.

[185]  Diana M. Mitrea,et al.  Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein. , 2014, The Journal of infectious diseases.

[186]  Mirko Bischofberger,et al.  Structure and assembly of pore-forming proteins. , 2010, Current opinion in structural biology.

[187]  D. Moss,et al.  Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia , 2014, Vaccine.

[188]  K. Chattopadhyay,et al.  Trapping of Vibrio cholerae Cytolysin in the Membrane-bound Monomeric State Blocks Membrane Insertion and Functional Pore Formation by the Toxin* , 2014, The Journal of Biological Chemistry.

[189]  S. Tenzer,et al.  Elimination of a bacterial pore‐forming toxin by sequential endocytosis and exocytosis , 2009, FEBS letters.

[190]  A. Calistri,et al.  AIP1/ALIX Is a Binding Partner for HIV-1 p6 and EIAV p9 Functioning in Virus Budding , 2003, Cell.

[191]  M. Popoff Epsilon toxin: a fascinating pore‐forming toxin , 2011, The FEBS journal.

[192]  W. Kühlbrandt,et al.  Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation , 2014, Nature Communications.

[193]  Y. Sugita‐Konishi,et al.  Crystal Structure of Clostridium perfringens Enterotoxin Displays Features of β-Pore-forming Toxins* , 2011, The Journal of Biological Chemistry.

[194]  R. Tweten,et al.  Identification and Characterization of the First Cholesterol-Dependent Cytolysins from Gram-Negative Bacteria , 2012, Infection and Immunity.

[195]  Stefan Raunser,et al.  Mechanism of Tc toxin action revealed in molecular detail , 2014, Nature.